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ABSTRACT 

 

Global climate models (GCMs) provide most climate change projections, but their 

coarse resolution must be downscaled to more local scales in order to conduct meaningful 

climate impact assessments. This dissertation investigates dynamically downscaled 

regional climate model (RCM) output from the North American Regional Climate 

Change Assessment Program (NARCCAP) in the Southeast United States. Analysis uses 

a suite of statistical measures to assess model skill in hindcasting minimum and 

maximum temperature and mean precipitation during an historical reference period, 

1970-1999. It identifies model biases and sheds light on their causes. Most models 

demonstrated high skill for temperature during the historical period. Two outliers 

included two RCMs run using the Geophysical Fluids Dynamics Lab (GFDL) model as 

their lateral boundary conditions; these models suffered from a cold maximum 

temperature bias, attributed to erroneously high soil moisture. Precipitation skill showed 

mixed skill – relatively high when measured using a probability density function overlap 

measure or the index of agreement, but relatively low when measured with root-mean 

square error or mean absolute error, because several models overestimate the frequency 

of extreme precipitation events. Downscaling generally improves projections of 

minimum temperature and mean precipitation at local scales for RCMs run with the 

Community Climate Model (CCSM) and Candian Global Climate Model version 3 
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(CGCM3), while adding value for CCSM-based runs with respect to maximum 

temperature. 

The historical analysis set the stage for interpreting future projections (2040-

2069) of minimum and maximum temperature and mean precipitation change, and helps 

to quantify associated uncertainties in these scenarios. Projected minimum temperatures 

show an ensemble mean increase between 1° and 2°C in the winter and early spring, and 

an increase between 2° and 3°C for all other months. Maximum temperatures show an 

ensemble mean increase between 1° and 2°C in winter and early spring with increases 

between 2° and 4°C from mid spring through fall. Precipitation increases up to 10% in 

the eastern part of the region from late summer through early spring. Ensemble mean 

decreases of up to 10% occurred in January, April, June, and July. In western portions, 

precipitation increases up to 10% in January through March, May, August, September, 

and November with an up to 12% decrease in precipitation in March, May through July, 

and October. This work provides users of NARCCAP data with indepth validation of 

commonly used climate variables from several ensemble members against observations, 

determines the “value added” by RCMs in the downscaling process, and assesses 

atmospheric processes internal to each RCM which feed back into the climate system. 

Additionally, recommendations are made for selecting NARCCAP members based on the 

intended assessment by stakeholders of climate information. Lastly, this work serves as a 

template for the type of indepth analysis needed for climate models to provide added 

confidence in a models’ ability to simulate all aspects of the climate system.
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CHAPTER 1 

INTRODUCTION 

How skillfully can climate models simulate regional temperature and 

precipitation? What do climate models project for future regional temperature and 

precipitation in the Southeast United States? This dissertation addresses these questions, 

ones that decision makers increasingly face as they consider climate change impacts in 

their assessments. These are also questions asked by water resource managers 

(Vorosmarty, et al., 2000), agricultural engineers and farmers (Tubiello et al., 2007; 

Kruijt et al., 2008), and forest managers (Shem et al., 2010) when they want to gauge 

impacts of potential temperature or precipitation changes in order to make informed 

decisions regarding mitigation and adaptation actions. Officials with multiple scales of 

interest from local municipalities, to state decision makers, to regional and federal 

authorities all require information on future climate change to determine appropriate 

adaptive measures (Smith et al., 2009), calculate adaptive capacity (Brooks et al., 2005), 

and determine limits of adaptive capacity at their scale of interest (Adger et al., 2009) 

rather than attempting higher risk and higher cost mitigation efforts (Pielke et al., 2007). 

Additionally, the Intergovernmental Panel on Climate Change (IPCC) calls for reliable 

estimates of expected impacts under projected climate change while seeking to gain trust 

in climate models, improve decision scenarios, build awareness of issues surrounding 

future climate, and increase dialog between stakeholders with knowledge to share (such 

as researchers) and with the wider public (Parry et al., 2007). Central to the problem of 
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making adaptation policy, especially at the local scale, is the spatial resolution at which 

readily available climate change information is presented and the limited predictability of 

some relevant climate variables (Cutter et al., 2012). Most global climate models (GCMs) 

have spatial resolution of 100 kilometers or more – relatively coarse with respect to 

surface-based processes influenced by climate. Figure 1.1a provides an illustration of this 

point with the dark black box in the center of the image representing one grid point from 

a GCM. 
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  a) 

  b) 
 

Figure 1.1. Example of grid resolution from a coarse resolution global climate model (a) 

and a high resolution regional climate model (b). The bold black box represents one grid 

point from the global climate model. 

 

 

 

For this reason, two main types of “downscaling” are used to transfer GCM 

information to a local and appropriate scale. The first is a physical/dynamical approach 
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using regional climate models (RCMs) nested within, and driven by GCMs (e.g. Gao et 

al., 2011; Pan et al., 2011). The second is a statistical approach (e.g. Hewitson and Crane, 

1996) wherein translation to local scales is based on the historical relationship between 

coarse GCM output and local-scale climatology. Figure 1.1b provides illustration of the 

resolution obtained through downscaling to higher resolution relative to GCM resolution. 

In this instance, twenty-times higher resolution (i.e., 20 RCM grid points are contained 

within one GCM grid) is achieved through the downscaling process with features such as 

coastlines and complex topography better resolved in comparison to GCMs. Most RCMs 

are run at resolutions of 25 to 50 kilometers and run with a one-way nested grid in which 

the large-scale GCM provides lateral boundary conditions (LBCs) for the smaller-scale 

RCM (Figure 1.2). This approach is called a one-way nested grid because the GCM 

provides boundary conditions to the RCM but the RCM does not feedback information to 

the GCM.  
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Figure 1.2. Representation of a regional climate model domain (black box) nested within 

a global climate model. 

 

 

 

Regional scenarios from the RCMs are only as good as the GCM providing LBCs, 

accounting for the largest amount of uncertainty in climate change projections (Deque et 

al., 2007; Jacob et al., 2007). Additionally, each RCM differs in their physical handling 

of complex atmospheric processes, adding another layer of uncertainty to climate change 

projections at local scales, which according to Giorgi (2006), accounts for the second 

largest source of uncertainly. An example of this increased uncertainty occurs in the 

summer months when convective precipitation is the primary mode of precipitation and 

results from the differing cumulus parameterizations each RCM uses. Another 
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disadvantage of running RCMs is the high expense associated with model run-time and 

large amount of computational resources required to run the model. The main advantage 

of the RCM is its physically-based approach incorporating governing equations of 

conservation of momentum, mass, moisture, and energy, as well as the inclusion of 

surface processes and land-atmosphere interactions, processes which large-scale GCMs 

have difficulty resolving. This allows the model to produce results that are physically 

meaningful at a small scale. 

Statistically downscaling GCM output requires deriving a relationship between a 

micro-scale observed variable from either a gridded dataset or raw surface station data to 

a GCM variable. For example, a relationship may be obtained between 500-mb 

geopotential height and observed surface temperature for the reference climate. A transfer 

function such as multiple linear regression (Kidson and Thompson, 1998; Zhang, 2005; 

Lim et al., 2007; Semenov and Stratonovitch, 2010) is used to find a relationship between 

the observed variable and GCM variable. Other examples of transfer functions include 

principal components analysis (Zorita and von Storch, 1998; Gangopadhyay and Clark, 

2005), correlation analysis (Zorita and von Storch, 1998), analogue methods (Zorita and 

von Storch, 1998), and artificial neural networks (Zorita and von Storch, 1998). Once a 

relationship with a supporting transfer function is established, future GCM values are 

used to drive the relationship for future micro-scale climate. The advantage of this 

method is that, unlike dynamically downscaled approaches, statistically downscaling 

global climate models requires less time and computational hardware. The drawback of 

statistical downscaling is the relationship developed for the transfer function is based on 

the observed climate and may not be representative of future relationships.  
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1.1 RESEARCH QUESTIONS 

Two general research questions structure the dissertation: 

 How skillful are dynamically downscaled models in simulating minimum and 

maximum temperature and mean precipitation in the reference period (1970-

1999) for the Southeast United States?  What are their biases?  Does downscaling 

provide “value added” at local scales? 

 What are future projections (2040-2069) of minimum and maximum temperature 

and mean precipitation change for the Southeast United States? 

Characterization of climate model forecast skill begins with determining how 

closely models output matches observations. Model skill matters to stakeholders utilizing 

climate model output for risk assessments of climate extremes from the local scale 

(Cutter et al., 2012) to the national scale. Assessing model skill, performing model 

validation, and determining model bias increases stakeholder’s confidence in future 

projections (Seneniratne et al., 2012), provided the model performs well. Additionally, it 

is extremely important to determine if downscaling global climate model data adds value 

beyond using global climate model output directly. If information gleaned from a GCM 

provides skillful results, the need to further downscale this information is moot; however, 

if value is added through the downscaling process, the users of RCM output stand to 

benefit. Few prior studies have evaluated whether downscaling adds value to impact 

analysis. Castro et al. (2005) provides one of the first comprehensive reviews of assessing 

value added through dynamical downscaling with another recent study performing an 

assessment for Europe (Feser et al., 2011). Castro et al. (2005) define “value added” as 

the amount of additional information the RCM can provide beyond the highest resolved 



 

8 

wavelength of the global model. In other words, downscaling should improve the 

physical representation of the atmosphere at scales resolved by the RCM when compared 

to observations. Additionally, Castro defines the concept of “value retained”, which 

describes how well the RCM maintains consistency with the large-scale behavior of the 

LBCs. 

Within the last few months two studies by Di Luca have utilized the North 

American Regional Climate Change Assessment Program (NARCCAP; Mearns et al., 

2009) data to determine if value is added (Di Luca et al., 2012a; Di Luca et al., 2012b) 

for a small number of the ensemble’s members. Di Luca et al. (2012b) conclude that none 

of the five NARCCAP models used in their study provide physically significant 

improvement to winter-time temperature and only two models provide limited 

improvement in the summer for the Southeast U.S. For winter precipitation, only the 

RCM3-GFDL, RCM3-CGCM3, and CRCM-CGCM3 models provided improvement 

while the RCM3-GFDL and RCM3-CGCM3 provided improvement in summer-time 

precipitation, however, this improvement is limited to only the eastern portion of the 

region. Both Di Luca pieces point out that the potential value added through downscaling 

temperature and precipitation is mostly constrained to coastal regions and areas where 

complex topographic features (e.g., Appalachian and Rocky Mountains) have large 

influence on the local scale.  

 

1.2 ESTABLISHING SKILL IN DOWNSCALING 

A recent study by Schoof et al. (2009; hereafter, Schoof) aimed to determine 

which methods of downscaling (dynamical or statistical) were superior to the other and 
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which provided skillful and meaningful results for the Southeast U.S. Schoof produced 

hindcasts of mean temperature and precipitation using both downscaling approaches and 

found, overall, precipitation hindcasts were less skillful than temperature hindcasts. Skill 

was evaluated using the root mean square error of mean temperature and precipitation 

against climatological data. This result makes intuitive sense from the perspective that 

temperature is closely aligned with the prevailing meso- and synoptic-scale pattern, 

scales at which GCMs excel, and are better translated in a downscaling approach than the 

complex nature of precipitation initiation, especially convective precipitation initiation. 

Schoof found no indication that either method of downscaling provided a direct 

advantage over the other, a finding echoed by Murphy (1999). Although this dissertation 

does not incorporate statistically downscaled climate data, this work does utilize a multi-

model ensemble of dynamically downscaled models, a recommended approach by Pierce 

et al. (2009) and Knutti et al. (2010) as best practices for presentation of regionally 

projected climate change scenarios.  

Ensemble approaches to dynamically downscaled projections have mostly been 

confined to the European realm with the PRUDENCE (Christensen and Christensen, 

2007) and ENSEMBLES (Hewitt and Griggs, 2004) projects as examples. In 2009, a 

consortium within North America developed a dynamically downscaled climate dataset 

dubbed the North American Regional Climate Change Assessment Program 

(NARCCAP). NARCCAP is an international program to produce high resolution climate 

change simulations in order to investigate uncertainties in regional scale projections of 

reference and future climate. Additionally, the project’s aim was to generate climate 
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change scenarios for use in impacts research (NARCCAP webpage, 

http://www.narccap.ucar.edu/).  

A number of publications have explored NARCCAP model output for various 

regions of the United States including the intermountain West (Wang et al., 2009), the 

southern Colorado Rockies (Rangwala et al., 2012), the Colorado River Basin (Gao et al., 

2011), the upper-Mississippi River Valley (Takle et al., 2010), the Lake Winnipeg 

watershed (Shrestha et al., 2011), greater Vancouver, Canada area (Hambly et al., 2012), 

and a general analysis of the entire NARCCAP modeling domain (Schliep et al., 2009). 

One study used a small number of NARCCAP ensemble members to evaluate 

performance during a historical reference period for the Southeast U.S. (Shem et al., 

2010). However, this study did not provide the breadth or depth needed to fully evaluate 

as many NARCCAP ensemble members as possible and provide comprehensive and 

detailed future climate model projections.  

Work recently published by Sobolowski and Pavelsky (2012) evaluated six 

NARCCAP ensemble members for the Southeast United States during a historical 

reference period (defined by them as 1970-2000). Using the reliability ensemble 

averaging (REA) technique developed by Giorgi and Mearns (2003), Sobolowski and 

Pavelsky reduced uncertainty in future projections of seasonal temperature and 

precipitation by weighting projected change according to how skillful the models were in 

the reference period, accounting for model bias relative to observations, and determining 

how close future projections for each model was to the multi-model mean.  
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1.3 STUDY AREA 

There are two drawbacks to Schoof’s study which will be addressed in this 

dissertation: 1) Schoof’s use of the states of Alabama, Georgia, and Florida to narrowly 

define the Southeast U.S. This dissertation will encompass what is traditionally thought 

as the Southeast U.S., which are the states of Alabama, Georgia, Mississippi, North 

Carolina, South Carolina, and Tennessee; and 2) Schoof utilizes only one dynamically 

and one statistically downscaled model.  

 Climatologically, the Southeast U.S. is classified as humid subtropical (Cfa) in the 

Köppen climate classification system, is characterized by hot, humid summers and cool 

winters. The coldest month’s mean temperature is between -3°C and 18°C with the 

hottest month’s mean above 22°C with no pronounced dry season (thus the “f” in “Cfa”). 

Winter rainfall is associated with large-scale driven storm systems with frequent passage 

of mid-latitude cyclones and associated wide-spread precipitation while the summer 

months are marked by convective (thunderstorms), locally-driven storms with an 

occasional tropical storm or hurricane impacting the region. 

The Southeast United States is the focus region for this dissertation because 

results obtained from this work directly impact projects being conducted by the Carolinas 

Integrated Sciences and Assessment (CISA) team, whose focus is to work with a variety 

of stakeholders across North Carolina and South Carolina to incorporate climate 

information into water and coastal management and related decision-making processes. 

Efforts include working with decision makers on improving their adaptation to drought, 

linking climate variability to watershed, landuse, and coastal adaptation planning, and 

characterizing climate vulnerability in the region. A major area of CISA research centers 
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on watershed modeling, of which, NARCCAP dynamically downscaled information will 

be used to drive watershed models used to project impacts of climate change on water 

availability in the region. In addition to CISA-related efforts, other locations within the 

Southeast U.S. can use information gleaned from this work to aid in determination of 

water availability for medium and large metropolitan areas which rely on small 

watersheds for their water supply (Gavrilles, 2010) and energy needs (World Resources 

Institute, 2009).  

Preliminary analysis conducted to gain familiarity with datasets and methods 

proposed as part of the dissertation work noted an east-west gradient in future mean 

temperature and precipitation projections across the Southeast U.S. Due to this gradient, 

the Southeast U.S. region defined above was split into two sub-regions. Further 

justification for aggregating the Southeast U.S. into two separate sub-regions accounts for 

meteorological and climatological micro-, meso-, and synoptic-scale patterns that impact 

the two sub-regions differently due to the influence of the Appalachian Mountains and 

Atlantic and Gulf Coasts. These regions are defined as the east region (Georgia, North 

Carolina, and South Carolina) and the west region (Alabama, Mississippi, and 

Tennessee). A similar, yet slightly different, east-west sub-division is noted in work 

conducted by Bukovsky (2011) in which she used NARCCAP data to calculate and 

categorize regions within the NARCCAP domain. Similar size sub-domains and 

subsequent analysis to those in this dissertation have been conducted for other regional 

climate model ensemble assessments (Kjellstrom et al., 2010). 

Chapter 2 provides a detailed review of the dynamically downscaled multi-model 

dataset used for the research, including its creation and purpose, and specific information 
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related to emission scenario, GCMs used, and spatial and temporal resolution. 

Additionally, Chapter 2 details the steps taken to format the model data such that each 

model had the same geospatial projection, the four methods used to calculate model skill, 

how model bias was determined using multiple metrics, and whether downscaling 

provides value, the effective number of models needed from an ensemble. Finally, the 

chapter concludes with an explanation of how future projections of climate change were 

computed and presented.  

Chapter 3 provides detailed analysis of model skill using four statistical measures 

and providing assessment of model biases. Further, the chapter determines if dynamically 

downscaling GCM data adds value to climate change projections at local scales over 

GCMs alone by calculating each of the four skill metrics for the driving GCMs and 

comparing the values to RCMs driven by each GCM during the reference period. Another 

aspect of this chapter provides insight into the effective number of models needed from 

the NARCCAP ensemble to provide meaningful climate change results while maintaining 

inter-model independence, an aspect several ensemble projects fail to achieve (Masson 

and Knutti, 2011).  

Chapter 4 provides projections of future climate for minimum and maximum 

temperature, and mean precipitation. A series of tables and maps provide aspects of 

central tendency change from the ensemble. Additionally, spread about the mean and 

median will be presented in the form of standard deviation and the inner-quartile values 

(25
th

 and 75
th

 percentiles, respectively). Finally, ensemble projections will be provided 

from a smaller ensemble comprised of highly skillful models (determined by four skill 

metrics) and limited in number by findings about the effective number of models. 
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Chapter 5 provides summary, key findings, scientific merit and implications of this work 

to the field of climatology, and suggestions for future work.
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CHAPTER 2 

 

DATA AND METHODS 

2.1 DATA 

The increased need for local and regional climate change projections has fostered 

several collaborative partnerships to develop diverse downscaling techniques and provide 

relevant climate model output to decision makers (Stainforth et al., 2007). This 

dissertation used dynamically downscaled climate data from the North American 

Regional Climate Change Assessment Program (NARCCAP). Methods to compare 

observed gridded data to downscaled data for the reference climate involved both 

qualitative and quantitative methods of assessing spatial differences and model skill to 

replicate the reference climate, a common practice in climate research (Eum et al., 2012). 

Described within this section are the dynamically downscaled dataset and the gridded 

observed and reanalysis datasets used to validate the dynamically downscaled dataset.  

 

2.1.1 DYNAMIC DOWNSCALING 

  In NARCCAP, investigators generated 50-km regional climate model output 

using six RCMs coupled with four global climate models as lateral boundary conditions 

(LBCs). The regional climate models save output approximately every 3-6 hours. Table 

2.1 provides the acronyms, full names (with references), the modeling group responsible 

for providing output, and the GCMs used as lateral boundary conditions for each RCM. 

In addition to the eight models listed in Table 2.1, data from the Geophysical Fluid 
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Dynamics Laboratory (GFDL) model timeslice experiment is used to provide a third 

RCM run with the GFDL GCM. In the timeslice experiments, the atmospheric 

component of the GCM is run without the full-coupled ocean component of the model. 

Instead, the boundary conditions for sea surface and ice for the reference period runs are 

based on observed data, and boundary conditions for the future period runs are derived by 

perturbing the same observed sea-surface temperature and ice data by an amount based 

on the results of a lower-resolution run of the full GCM. Excluding the coupled ocean 

model allows the atmospheric model to be run at a much higher resolution (50-km in this 

case) because the computational requirements are much lower. This procedure is called a 

'timeslice' experiment because it only simulates two slices of time, one for the present 

(1968-2000) and one for the future (2038-2070), skipping over the time between them. 

This method saves time and computational resources compared to the usual GCM 

computation methodology of running one simulation for 100 to 150 years.  



 

1
 Column 4 indicates the lateral boundary conditions (LBCs)/GCMs used to drive each RCM. Column 5 provides a reference to the number found on the 

percentile plots in Chapter 3. 
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Table 2.1. Acronyms, full names with references, and modeling groups of RCMs involved in NARCCAP and this dissertation.
1
 

Regional 

Climate 

Model 

Full name (Reference) Modeling group 
Lateral Boundary 

Conditions 

Number found in 

percentile plots in 

Chapter 3 

CRCM 

Canadian Regional Climate 

Model (version 4.2.0) 

(Caya and Laprise, 1999) 

Ouranos/UQAM 
CCSM 

CGCM3 

8 

7 

ECP2 

Experimental Climate 

Prediction Center Regional 

Spectral Model 

(Juang et al., 1997) 

University of California-

San Diego / Scripps 
GFDL 3 

MM5I 

MM5 – PSU/NCAR Mesoscale 

Model (version 5) 

(Grell and Stauffer, 1993) 

Iowa State University CCSM 1 

RCM3 

Regional climate model (version 

3) 

(Giorgi et al., 1993) 

University of California-

Santa Cruz 

CGCM3 

GFDL 

6 

2 

WRFG 

Weather Research and 

Forecasting model 

(Leung et al., 2005) 

Pacific Northwest 

National Laboratory 

CCSM 

CGCM3 

4 

5 
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The domain of each regional climate model includes the contiguous United States, 

Canada, and northern Mexico (Figure 2.1). Each model differs in expressions of dynamic 

processes, including cumulus parameterization, number of vertical levels within the 

model, dynamics packages, and land-surface process treatments. Table 2.2 provides a 

comprehensive breakdown of the characteristics of each NARCCAP ensemble member. 

GCMs used as boundary conditions were generated for the International Panel on 

Climate Change’s (IPCC) Fourth Assessment (IPCC, 2007) by the World Climate 

Research Program’s (WCRP’s) Working Group on Coupled Modeling (WGCM) and 

hosted on a server at Lawrence Livermore National Laboratory’s (LLNL) Program for 

Climate Model Diagnosis and Intercomparison (PCMDI, 2010). For this dissertation, the 

lone NARCCAP RCM run with the HadCM3 GCM as its LBC was excluded because at 

of the time of analysis, no other NARCCAP model(s) utilized HadCM3’s LBCs. To 

provide a consistent, meaningful, and robust analysis, it was important for multiple 

models to share the same LBCs.  
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Figure 2.1. Modeling domain for each of the six NARCCAP regional climate models. 

Courtesy of the North American Regional Climate Change Assessment Program 

(www.narccap.ucar.edu). © UCAR 
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Table 2.2. Major characteristics of the regional climate models participating in NARCCAP and used in this dissertation.  

Modeling 

Component 
CRCM ECP2 MM5I RCM3 WRFG 

Dynamics 
Nonhydrostatic, 

Compressible 

Hydrostatic, 

Incompressible 

Nonhydrostatic, 

Compressible 

Hydrostatic, 

Compressible 

Nonhydrostatic, 

Compressible 

Lateral Boundary 

Treatment 

9 points (Davies 

1976); spectral 

nudging of horizontal 

wind. 

Perturbations 

relaxed at 

boundaries; spectral 

filter 

4 points (linear 

relaxation) 

12 points 

(exponential 

relaxation) 

15 grid points 

(exponential 

relaxation) 

Land Surface CLASS NOAH NOAH BATS NOAH 

Thermal/Water 

Layers 
3/3 4/4 4/4 1/3 4/4 

Vegetation Types 21 vegetation classes 13 classes 
16 classes from 

USGS SiB model 
19 classes 

24 classes from 

USGS 

Boundary Layer 

Local K, gradient 

Richardson number 

formulation 

Hong-Pan non-local 

K 

Hong-Pan (MRF) 

countergradient, 

non-local K 

Non-local K, 

countergradient 

flux 

Yonsei Univ. 

(explicit 

entrainment) 

Explicit Moist 

Physics 

Removal of 

supersaturation 

Removal of 

supersaturation 
Dudhia simple ice 

SUBEX, 

prognostic cloud 

water 

Prognostic cloud 

liquid and ice, rain, 

snow 

Cumulus 

Parameterization 
Mass Flux 

Simplified Arawaka- 

Schubert 

Kain- Fritsch2 mass 

flux 

Grell with Fritsch- 

Chappell closure 
Grell 

Number of 

Vertical Levels 
29 28 23 18 35 

Type of Vertical 

Coordinate 

Gal-Chen scaled-

height 
Normalized pressure Sigma Terrain following Terrain following 

Original Grid 

Size 
160 x 135 161 x 136 154 x 129 160 x 130 155 x 130 

Length of 

Timestep 
900 Seconds 100 seconds 120 seconds 150 Seconds 150 seconds 
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tasmin/tasmax 

Calculation 
timestep timestep timestep 3-hourly hourly 

Spectral Nudging Yes Yes No No No 

Longwave 

Radiation 

Scheme 

Morcrette (1984) 
Chou and Suarez 

(1994) 
RRTM CCM3 CAM3 

Shortwave 

Radiation 

Scheme 

Fouquart and Bonnel 

(1980) 
Chou (1992) 

MM5 cloud scheme 

(not CCM2) 
CCM3 CAM3 

Uniform 

Aerosols? 
No Yes Yes Yes 

Yes* 

*(ozone varies) 
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Modeling runs for NARCCAP were conducted for the “present climate” (1979-

2004) with NCEP/DOE Reanalysis II data (Kanamitsu et al., 2002) as boundary 

conditions as Phase I of NARCCAP and another run in the reference climate (1968-2000) 

using four GCMs as LBCs comprised Phase II (Mearns et al., 2009). The NCEP/DOE 

Reanalysis II dataset provides the equivalent of observed data as boundary conditions for 

RCMs and allows for the assessment of uncertainties and bias from the RCMs alone. 

NARCCAP runs were also conducted for future climate (2038-2070) using the Special 

Report on Emissions Scenarios (SRES, Nakicenvoic et al., 2000) A2 emission scenario.  

The A2 emission scenario is characterized by a world of heterogeneity with 

independently operating and self-reliant nations. Self-reliance is defined in terms of less 

emphasis on economic, social, and cultural interactions between regions. The population 

in the A2 scenario continuously increases with time, faster than the other emissions 

scenarios developed for the IPCC Third Assessment Report (IPCC, 2001). Lastly, the A2 

emission scenario is characterized by slower and more fragmented technological changes 

and improvements to per capita income. Figure 2.2 illustrates the carbon dioxide 

emissions due to fossil fuels and deforestation, carbon dioxide concentrations, and global 

temperature change with respect to 1990 for the four emission scenarios (A2, B2, A1, and 

B1). Additionally, Figure 2.3 provides an illustration of the variables which factor into 

the emission scenarios and how each differs in their economic, environmental, global, 

and regional aspects.  
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Figure 2.2. Illustration of carbon dioxide emissions from fossil fuels (a) and deforestation 

(b), atmospheric CO2 concentrations (c), and global temperature change with respect to 

1990 values (d) for the A2, B2, A1, and B1 emission scenarios. Graphics made based on 

data from the MAGICC/SCENGEN v 5.3 software 

(http://www.cgd.ucar.edu/cas/wigley/magicc/). 
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Figure 2.3. Illustration how each of the main SRES emissions scenarios differ from each 

other in terms of the economic, environmental, global, and regional aspects.  

 

 

 

 

The A2 emission scenario provides projections at the higher end of the SRES 

scenarios. However, global greenhouse gas emissions from 2000 (when the SRES 

scenarios were reported) to present, match those observed, and the A2 emission scenario 

can be considered high-end only if change is not made in the current rate of fossil fuel 

consumption. Although the forthcoming 5
th

 IPCC assessment (Johns et al., 2011) will 

include additional emissions scenarios, the A2 emission scenario is still considered 

among the highest. It also parallels observations during the past 15 years, instilling 

confidence that it may provide sound projections for future scenario years (2038-2070). 
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2.1.2 GRIDDED OBSERVED DATASET 

A gridded meteorological dataset developed by the University of Washington 

(hereafter, Maurer dataset) serves as the observed dataset. It is described in Maurer et al. 

(2002) and available for download at http://www.engr.scu.edu/~emaurer/data.shtml. The 

Maurer dataset has daily temporal resolution of minimum and maximum air temperature 

and precipitation from 1950 to 1999 and a spatial resolution of 12 kilometers, covering a 

domain from 25.125°N to 52.875°N latitude and -124.625°E to -67.000°E longitude. 

Additionally, the Maurer dataset treats interactions at the land-atmosphere interchange in 

a way that is physically superior to reanalysis data. Accuracy in calculating land-

atmosphere interactions and the energy budget contributes to model bias (a finding which 

is further explored in Chapter 3).  

Unlike reanalysis data, the Maurer dataset does not employ the use of soil 

moisture ‘‘nudging’’ or adjusting, which results in failed closure of the surface water 

budget. Maurer et al. (2001) showed that the nonclosure term can be of the same order as 

other terms (e.g., runoff) in the surface water cycle. Although nudging in reanalysis data 

is designed to bring the model (especially atmospheric moisture variables) closer to 

observations, this is done at the expense of other components of the water budget, and 

complicates studies focused on the interaction and variability of water budget 

components at the land surface (like temperature and precipitation). Maurer et al. (2000, 

2001) argue that physically-based land surface model forced with quality controlled 

surface variables produce better data for diagnosis of land surface water budget 

simulations. 
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2.1.3 GRIDDED REANALYSIS 

The National Centers for Environmental Prediction’s (NCEP) North American 

Regional Reanalysis (NARR; http://www.esrl.noaa.gov/psd/data/gridded/data.narr.html) 

supplements observations of variables not found in the Maurer dataset. It allowed 

systematic biases of the RCMs by examining variables that may affect temperature and 

precipitation. Variables from the reanalysis dataset ranged from micro-scale processes at 

the land-atmosphere interface (soil moisture content, latent heat flux, and sensible heat 

flux) and free atmosphere (total cloud cover) to meso- and synoptic-scale processes (500-

mb height and sea-level pressure). Soil moisture content is expressed as a uniform 

thickness of water within the soil (in millimeters) and can be equated to the mass of water 

(in kilograms) contained within a specified area (in square meters) (Kabela, 2006). Latent 

heat flux is the amount of heat which must be supplied to a system to convert a unit mass 

of water from one state (solid, liquid, or gas) to another without changing its temperature 

(Monteith and Unsworth, 2008). Sensible heat flux is the amount of heat needed to 

change temperature of a system through convection or conduction (Campbell and 

Norman, 1998). Sensible and latent heat flux are related through the energy balance 

equation in which the amount of energy entering a system (such as the atmosphere) must 

equal the energy leaving the system. Equation 2.1 illustrates the major components of the 

energy balance equation (adapted from Gates, 1980): 

          (2.1) 

 

where Qa is the energy absorbed by the system, R is the radiation emitted by the system, 

C is sensible heat flux, and λE is latent heat flux. 
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 To make a determination on a model’s ability to maintain water balance at the 

surface, a comparison between monthly potential evapotranspiration (PET) and monthly 

mean precipitation (P) was performed by subtracting P from PET. PET is defined as the 

amount of water that can be evaporated from land, water, and plant surfaces if soil water 

were in unlimited supply. Positive values of P-PET indicate moisture surplus while 

negative values indicate moisture shortfall. PET was estimated empirically, using 

Thornthwaite’s method (Thornthwaite, 1948) that requires only mean monthly 

temperature and day length as input. Although Thornthwaite’s methodology does not 

account for advection of moist or dry air, but is suitable for estimating potential 

evaporation outside of arid and semi-arid climates (Mintz and Walker, 1993), providing a 

reasonably accurate estimate of PET (Palmer and Havens, 1958). Calculation of PET (in 

mm day
-1

) utilizing Thornthwaite’s methodology follows in Equations 2.2 through 2.4: 

  ∑(
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where Ti is the montly mean surface air temperature (°C), I is the montly heat index, a is 

an empirical exponent based on I, and h is a constant varying by month to account for 

days per month and duration of sunlight hours. Values of h are found in Table 2.3 for 

34°N latitude, which was assumed to be the central latitude for the Southeast U.S. 

domain as defined in this dissertation. 
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Table 2.3. Mean possible duration of sunlight at 34°N latitude expressed in units of 30 

days of 12 hours each (Thornthwaite, 1948). 

 

Month h 

January 0.88 

February 0.85 

March 1.03 

April 1.09 

May 1.20 

June 1.20 

July 1.22 

August 1.16 

September 1.03 

October 0.97 

November 0.87 

December 0.86 

 

NARR has a temporal resolution from 1979 to the present, available every 3 

hours, with a spatial resolution of 32 kilometers (Mesinger et al., 2006). NARR 

assimilates a vast amount of observational data from ground-based platforms such as the 

Automated Surface Observing System (ASOS) and ships and buoys, upper-air platforms 

such as rawinsondes, piballs, dropsondes, and fixed-wing aircraft, and geostationary 

satellites (Mesinger et al., 2006). The dataset covers a general domain from 12.2°N to 

57.3°N latitude and -152.9°E to -49.4E longitude. 

 

2.2 METHODS 

To answer the first research question, pertaining to model proficiency and bias, 

model skill was measured against the Maurer dataset for the Southeast U.S. for monthly 

minimum and maximum temperature and mean precipitation during the reference period, 
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1970-1999. It is hypothesized that most NARCCAP ensemble members will prove 

skillful in reconstructing monthly reference period temperature; however, hindcasts of 

precipitation will not be a skillful as temperature due mostly to the prescribed nature in 

which models form precipitation. Skill will be determined through calculation of four 

metrics: probability density function overlap (Perkins et al., 2007), an index of agreement 

(Willmott et al., 2011), root mean square error, and mean absolute error, all described 

fully in this section.  

Sobolowski and Pavelsky utilize Perkins et al. (2007)’s method for determining 

model skill in their calculation of reliable ensemble averaging (REA), however, several 

differences are noted between their methodology and this dissertation’s methodology and 

include: 

 Sobolowski and Pavelsky’s use of monthly mean values of temperature and 

precipitation, arguing monthly mean values illustrate a model’s ability to 

replicate large-scale circulation and low-frequency variability. This 

dissertation utilizes daily minimum and maximum temperature and mean 

precipitation and argues daily data values provide insight into a model’s 

ability to replicate conditions and patterns from the micro-scale (10’s of 

kilometers) to the synoptic-scale (1000’s of kilometers). Additionally, 

Sobolowski and Pavelsky’s definition of “large-scale” is much too vague and 

can easily be taken to mean the same thing as the “synoptic-scale”, making the 

distinction between the two fuzzy. 

  Sobolowski and Pavelsky “bin” temperature every 2°C while this dissertation 

bins temperature every 0.5°C, following the methodology outlined by Perkins 
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et al. (2007). Smaller bin sizes allow for the determination of skill with 

increased precision while larger bin sizes not only reduce precision but leads 

to slightly higher skill scores due to smoothing of the probability density 

function (PDF). 

 Sobolowski and Pavelsky chose to assess skill, bias, and present future 

projections from only six NARCCAP ensemble members while this 

dissertation utilizes nine members. Assessing a larger number of ensemble 

members enables users of NARCCAP data a larger pool from which to choose 

better performing models. 

 Lastly, this dissertation utilizes four metrics to assess model skill, arguing that 

no one skill method provides “the” answer. Conversely, Sobolowski and 

Pavelsky use only Perkins’ method for assessing skill.  

To delve further into a model’s short-comings, users of climate models must 

perform detailed analysis beyond looking at the variables of interest such as temperature 

and precipitation. There is an inherent need to find the systematic biases found in the 

small and large-scale model processes with particular emphasis on the land-atmosphere 

interchange (Ma et al., 2011). Here, I examine soil moisture content, which has been 

shown to impact temperature more so than precipitation (Giorgi et al., 1996) yet has 

importance in the formation of warm-season convective rainfall (Pielke, 2001; Koster et 

al., 2003), and cloud cover. Cloud cover is of particular interest because of its broad 

reaching impacts to not only temperature and precipitation, but more importantly to 

surface fluxes (latent and sensible) and well as evapotranspiration and atmospheric 

albedo (Lawrence and Chase, 2012). Additionally, the large-scale processes passed from 
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the parent GCM to the regional climate model have as much of an impact on the model’s 

skill as micro-scale processes (Ray et al., 2010), necessitating exploration of variables 

such as 500-mb height and sea-level pressure. Lastly, to aid in determining model bias, 

percentile plots were created for minimum and maximum temperature and mean 

precipitation for each sub-region and month to determine where, within each variable’s 

data distribution, the model has the most bias. 

With respect to the second research question, pertaining to future temperature and 

precipitation projections, ensemble model mean change is calculated for each variable 

and sub-region. Results are presented as an ensemble mean for each sub-region with 

spread illustrated by box and whisker plots as recommended by Warner (2011). To 

provide a different perspective and utilize individual model Perkins’ skill scores and 

RMSE values obtained in the first research question, weighted ensemble mean change for 

minimum and maximum temperature and mean precipitation for the Southeast U.S. were 

calculated, placing more weight in the ensemble mean for those models which prove 

skillful and less weight to those deemed less skillful. Change in temperature is expressed 

as the difference between the future climate (average period 2040-2069) and the 

reference climate (1970-1999). Precipitation change is expressed as a percent change 

from the reference period to the future. Sub-region domain-wide ensemble mean is 

calculated to gauge change on a more meaningful scale. Additionally, change at each grid 

location will be computed to determine change locally. 

Within the following subsections, the step-by-step process for modifying raw 

NARCCAP files for analysis is explained. Further, the remaining six subsections detail 

the processes and procedures for calculating model skill, determining the inherent biases 
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within the RCMs, outlining how to determine if dynamically downscaling GCM data 

provides value over GCM projections alone, the method for exploring the effective 

number of models needed within an ensemble to provide meaningful information while 

maintaining model independence, and finally the last subsection details how future 

climate projections were calculated and how they will be displayed in Chapter 4. 

 

2.2.1 RE-GRIDDING AND EXTRACTING DATA 

Each of the NARCCAP ensemble members contained geospatial referencing 

native to each model and institution running the model. Yet, output from each model 

must be regridded to the same geospatial representation in order to perform robust 

analysis, assessing the NARCCAP ensemble members against the two observed datasets. 

This subsection outlines the procedure to re-grid model and observation data efficiently 

with commercial-off-the-shelf (COTS) software developed for meteorological and 

climatological purposes. 

 All datasets used in the dissertation were in the network Common Data Form 

(netCDF) format, preferred because it is a self-describing file (i.e., metadata is contained 

within the file), is portable (accessed by computers with different ways of storing 

integers, characters, and floating-point numbers), and is scalable by allowing a user to 

easily subset a large dataset (Rew et al., 2012). Analysis of netCDF data was performed 

with Climate Data Operators (CDO, Mueller and Schulzweida, 2010), a collection of 

more than 400 command line operators to manipulate and analyze climate and weather 

forecast model data. CDO can be run on any Unix/Linux platform as well as in Windows 

using either the Cygwin Unix (Cygwin, 2012) emulator or the binary DOS-prompt 
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executable. The Unix/Linux and Cygwin platforms require the installation of a netCDF 

library to properly read and manipulate netCDF files. 

The first task before re-gridding could be achieved was to combine multiple 

netCDF files for each NARCCAP ensemble member and the observed datasets into one 

file for each dataset and variable. From the NARCCAP perspective, model output is 

saved in five year incremented netCDF files, resulting in seven netCDF files for one 

variable in the reference period and seven more files in the future period. Additionally, 

data files from the Maurer dataset were saved as annually compressed netCDF files 

(gzipped), resulting in 30 total files for one variable. The CDO command “cat” 

concatenates multiple files into one larger file with command line prompts like the 

example shown below: 

> cdo cat infile1.nc infile 2.nc infile3.nc outfile.nc 

 

The process to concatenate a file using CDO runs to completion in approximately 15 

minutes using a 2 GHz dual-core processor with 4 GB of RAM.  

 Re-gridding and performing calculations on the netCDF files takes place within 

CDO. To improve computer processing and reduce the need for large quantities of disk 

storage space, CDO allows users to place multiple operators within one command line 

call if only one input file is used and one output file is created. This methodology is not 

applicable to multiple input files and one output file. An example of the multi-operator 

call is illustrated below: 

> cdo –sellonlatbox,-94,-73,28,38 -remapnn, 

”grid_description” –selyear 1970/1999 –daymax –subc,273.15 

infile.nc outfile.nc 
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The CDO software breaks down the multiple commands by beginning with the 

inner- most command to the left of the input file, in this case performing a subtraction of 

273.15 to convert from Kelvin to degrees Celsius for all grid points within the input file. 

The next command to the left of “-subc” takes the 3-hourly data from within the input file 

which has been converted from Kelvin to degrees Celsius in the step prior, and 

determines the daily maximum temperature at each grid point and each day. The third 

command selects only those data points which fall between the years of 1970 and 1999 

(this step is not necessary for the two observed gridded datasets and only applies to 

NARCCAP data since the concatenate step produced a data file ranging from 1968 to 

2000).  

 The fourth step builds on the three previous commands and re-grids the input file 

using a nearest-neighbors averaging (distance-weighted average; Jones, 2001) approach 

to map the data onto a regular latitude-longitude projection centered over the Southeast 

U.S. domain utilizing a text file named “grid_description.txt” to provide the new grid 

definition. The contents of “grid_description.txt” can be found in Appendix A. The 

nearest-neighbors algorithm was preferred over other available interpolation algorithms 

within CDO because it has been shown to reduce error inherent in the interpolation 

process relative to other interpolation methods such as bilinear interpolation and inverse 

distance weighting (McGinnis et al., 2010). Figure 2.4 illustrates the result of 

interpolation using the nearest-neighbors approach for one NARCCAP ensemble member 

from its native geospatial grid (Figure 2.4a) to the simple latitude-longitude grid (Figure 

2.4b) defined in the “grid_description.txt” file. The final command in the 
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sequenceextracts data values within the box specified from -94°E to -73°E longitude and 

28°N to 38°N latitude. 
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Figure 2.4. Illustration of a NARCCAP RCM in its native geospatial projection (a) and 

the geospatial projection after undergoing a nearest-neighbors transformation in CDO (b). 

 

 

To maintain methodological consistency with Perkins’ skill score calculation 

described in the next subsection and adapted from Perkins et al. (2007), daily values of 

a) 

b) 
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minimum and maximum temperature and mean precipitation from the dynamically 

downscaled results and observed data were extracted for the period 1970-1999 from grid 

points located inside and within a half-degree of the boundaries of the two Southeast U.S. 

sub-regions (Figure 2.5). The same daily data values extracted for the Perkins method 

were also used for calculation of Willmott’s index of agreement, RMSE, and MAE. For 

comparsion of the NARCCAP ensemble members to the NARR and NCEP-driven RCM 

hindcasts, daily data from 1979-1999 were extracted from the same grid points. A half-

degree buffer was chosen due to the spatial resolution of the data and that the data points 

may not completely lie on or within state boundaries, yet are representative of some 

portion of the region and sub-region. By extracting daily values at each grid point, it is 

possible to gauge a model’s ability to simulate day-to-day variability rather than long-

term averages, giving a proper gauge for testing a model’s worth.  

 
 

Figure 2.5. Southeast U.S. study area with emphasis on the grid points which were 

similar between all NARCCAP ensemble members, the Maurer dataset, and the NARR 

dataset (large red dots).  
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Data extraction was performed using the R Project for Statistical Computing 

software (available on the Comprehensive R Archive Network [CRAN] at http://www.r-

project.org). R is described in detail in Ihaka and Gentleman (1996). The R library 

extension “ncdf” was utilized to read the netCDF files created using CDO. Appendix B.1 

provides an example R script which calls a netCDF file and extracts the data points 

within the eastern sub-region for the month of December and saves the result in comma-

delimited format with an appropriately detailed name of the contents within the file. A 

similar procedure was followed using R and the aforementioned R script to extract 

observation data from the Maurer, NARR, and GCM datasets. Upon the completion of re-

gridding, performing calculations, and extracting variables from the multiple datasets, the 

processes described in the next subsections could be performed. 

 Although individual grid points were extracted within the six states classified as 

the Southeast U.S., all analysis was conducted by aggregating data to the sub-regional 

scale (rather than grid point by grid point) for several reasons. First, the PDF skill score 

metric was designed by Perkins et al. (2007) for determination of GCM skill across all of 

Austrailia (for the entire country rather than at individual grid locations) and is used in 

the same maner for regional climate model skill assessments (e.g., Boberg et al., 2010; 

Kjellstrom et al., 2010). To maintain methodological consistency with others studies 

using Perkin’s method, aggregation was necessary. Additionally, although Kjellstrom et 

al. (2010) display skill scores spatially throughout Europe, they average individual grid 

skill scores to obtain a single skill score for each of their defined sub-regions. Second, 

aggregating data into sub-regions allows for meso- and synoptic-scale pattern recognition 

which may not be evident when analyzing at each grid location. To further this point, 
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GCMs were not meant to represent conditions at a single grid point but are more 

representative of the synoptic-scale (100s to 1000s of kilomters). Although RCMs are 

still not representative of a single grid location they are representative of the meso-scale 

(10s to 100s of kilometers). Third, most crop and hydrological assessments aggregate 

information from the single grid point scale to a field (or multi-field) or watershed-scale 

(e.g., Easterling et al., 1998; Jha et al., 2004) and assessing skill and bias on a sub-

regional level is adequate. Lastly, although the information contained within an 

individual RCM grid better represents condictions within the grid point, models run at 50 

km resolution will still have issues with pinpointing information at a specific location 

(e.g., town, city, weather station, etc.). 

  

2.2.2 SKILL SCORE 

Once the data was extracted and saved in a comma-delimited file, probability 

density functions (PDFs) were generated for monthly minimum and maximum 

temperature and mean precipitation from each of the downscaling approaches as well as 

gridded observations for the Southeast U.S. PDFs can be a convenient way of condensing 

a vast amount of data to find probability of occurrence of an event (Brankovic and 

Palmer, 1997; Koo et al., 2009; Jupp et al., 2010). Once the PDFs were created using 

code developed in R, a method developed by Perkins et al. (2007) was used to calculate 

the cumulative minimum value of two distributions of a binned value (defined by the 

user), measuring the common area between two PDFs (Equation 2.5): 

        ∑       (     )

 

 

 (2.5) 
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where n is the number of bins used to calculate the PDF, Zm is the frequency of values in 

a given bin from the model, and Zo is the frequency of values in a given bin from the 

observed data. Temperature minimum and maximum bins were chosen as the minimum 

and maximum found in each month’s observations, respectively, with a bin size of 0.5°C, 

while precipitation ranged from 1 mm/day to the maximum monthly value from 

observations, respectively, with a bin size of 1 mm/day (Perkins et al., 2007). 

Precipitation values below 1 mm/day were not included in the analysis as part of the 

dataset to create the PDFs because it contributes little to daily precipitation (Dai, 2001; 

Sun et al., 2006).  

 The following R code is a sample of how the PDFs were created and the Perkins’ 

skill scores computed after opening the respective dataset and saved in R as a data frame 

(see the complete R script in Appendix B.2): 

z1<-sort(gg$Obs) 

z2<-sort(gg$MM5I_CCSM) 

 

fff<-cbind(z1,z2) 

 

a1<-z1[which(z1>=-12 & z1<=25)] 

b1<-z2[which(z2>=-12 & z2<=25)] 

 

#define the bins to use to create a histogram 

bins<-seq(-12,25,by=0.5) 

 

#create a histogram based on the bins defined above for both the 

#observed data and model data 

a2<-hist(a1, breaks=bins, freq=FALSE) 

b2<-hist(b1, breaks=bins, freq=FALSE) 

 

#extract the density value from the histogram – this is the height of 

#each bin in the histogram 

a3<-a2$density 

b3<-b2$density 

 

#combine the two density vectors into a data frame 

b4<-cbind(a3,b3) 

 

#find the minimum value at each row between the observations and the 

#model 

b5<-apply(b4,1,min) 
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#sum each of the minimum values found above and divide by 2 because the  

#bins were spaced every 0.5 degrees C. If the bin size had been 1,  

#there is no need to divide by anything. If the bin size was 0.25, the  

#user needs to divide the sum by 4, etc. The value found in this step  

#is the model’s Perkins’ skill score. 

b6<-(sum(b5))/2 

 

 

Perkins sorted each of the values within her domain from smallest to largest in order to 

compare the distribution of data values over the entire climatological period rather than 

specific dates or times.   

Figure 2.6 illustrates the histogram/probability density functions created for 

observations and one NARCCAP ensemble member. As an example of how the 

algorithm calculates Perkins’ skill score, the 20°C bin for observations has a PDF value 

of 0.1 while the model has a PDF value of 0.12. The minimum value between observation 

and model is 0.1 and would be added into the Perkins’ skill score calculation for that 

respective bin. 

 



 

42 

 

P
ro

b
a
b

ili
ty

 D
e

n
s
it
y
 F

u
n

c
ti
o

n
 

 
 Temperature (°C) 

 
Figure 2.6. Example temperature probability density functions from observations (left) 

and from one NARCCAP ensemble member (right).  

 

 

 

 

This method of determining model skill is described by Perkins as highly robust 

(Perkins, 2010) because its calculation does not rely on the underlying data distribution. 

Perkins’ skill scores are based on a scale from zero to one. If the model is able to 

simulate the reference climate (represented by observed gridded data) adequately, model 

Perkins’ skill score will be high. Conversely, if the model is unable to simulate the day-

to-day variability found in the reference climate adequately, model Perkins’ skill score 

will be low. Perkins’ method has been used to determine model skill with coarse GCM 

data (Perkins et al., 2007; Maxino et al., 2008; Pitman and Perkins, 2009; Perkins, 2009, 

and Perkins et al., 2012) and more recently with RCM output from ENSEMBLES 
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(Boberg et al., 2010; Kjellstrom et al., 2010). The method has yet to be applied to RCM 

output from NARCCAP, a gap that this dissertation has filled. This simple method gives 

decision makers insight into model skill in the historical reference period and how much 

confidence they can place in its projections for future climate, as well as provide 

information on individual model bias. A weight in calculating ensemble model mean for 

each sub-region will be applied based on model Perkins’ skill score, allowing for more 

meaningful results and is considered a good practice by IPCC Working Group I (Knutti et 

al., 2010). 

 

2.2.3 INDEX OF AGREEMENT 

Willmott et al. (2011) provide another method used to validate model 

performance. Their dimensionless index of agreement (dr) is computed by finding the 

magnitudes of the differences between the model-predicted and observed deviations 

about the observed mean relative to the sum of the magnitudes of the perfect model and 

observed deviations about the observed mean (Willmott et al., 2011). The modified index 

of agreement is based on the original form of Willmott’s index of agreement (Willmott 

and Wicks, 1980; Willmott, 1981). Equation 2.6 illustrates the revised index of 

agreement presented in Willmott et al. (2011), of which dr is based: 

  
     

∑ |(     ̅)  (     ̅)| 
   

∑ (|     ̅|   |    ̅|) 
   

 (2.6) 

 

where n is the number of values, Pi are the predicted values (model), Oi are the observed 

values, Ō is the observed mean. Equation 2.6 is unbounded at the lower values, thus 

Willmott et al. (2011) chose to refine the index of agreement such that the metric was 
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bounded between -1 and 1. The refined index of agreement is reduced from Equation 2.6 

and written in the form illustrated in Equation 2.7: 
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 (2.7) 

 

where c=2, representing the two mean absolute deviation terms in the numerator of 

Equation 2.6. Appendix B.3 provides an example R script for computing Willmott’s 

index of agreement. Table 2.4 breaks down Equation 2.7, using Equation 2.6 to aid in 

interpreting Willmott’s index of agreement values. 
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Table 2.4. Explanation and interpretation of the meaning behind values for Willmott’s 

index of agreement. 

 

Willmott’s 

Index of 

Agreement 

Value (dr) 

Condition 

Equation-based 

Form (from 

Equation 2.6) 

Interpretation 

1.0 ∑|     |   ∑|   

 

   

 

   

 ̅| 

   
   

   
 

 

 

 

1 - 0 = 1 

Perfect model 

agreement with 

observations. 

0.5 ∑|     |   ∑|   

 

   

 

   

 ̅| 

 

   
   

   
 

 

            

 

1 – 0.5 = 0.5 

 

Sum of the error 

magnitudes 

(denominator) is 

half the perfect 

model deviation 

and observed 

deviation 

magnitudes 

(numerator). 

-0.5 ∑|     |   ∑|    ̅|

 

   

 

   

 

 
   

   
   

 

 

 

0.5 - 1 = -0.5 

 

Sum of the error 

magnitudes 

(numerator) is 

twice the perfect 

model and 

observed deviation 

magnitudes 

(denominator). 

Approaching  

-1.0 
∑|     |   ∑|    ̅|

 

   

 

   

 

As ∑ |     |
 
    

increases, dr will 

approach -1 

 

OR 

 
   

   
   

 
 
 

0 - 1 = -1 

Model-estimated 

deviations about 

the observed mean 

are poor esimates 

of the observed 

deviation OR there 

is little observed 

variability. 
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Willmott et al. (2011) argue their modified index is an improvement over other 

non-dimensional techniques described in Nash and Sutcliffe (1970), Watterson (1996), 

Legates and McCabe (1999), and Mielke and Berry (2001) because of its flexibility, its 

well behaved nature, and because it can be used in a multitude of model-performance 

applications. While Willmott et al.’s index provides an intuitive and understandable 

metric, its performance and flexibility is very similar to Perkins’ method as illustrated in 

Figures 2.8 through 2.10 of the next sub-section. Minimum temperature has a correlation 

coefficient between the two metrics of 0.94 and 0.95, respectively, for the east and west 

sub-regions; maximum temperature has a 0.97 and 0.94 correlation coefficient, 

respectively, for each sub-region; and mean precipitation has a weaker, but still high, 

correlation coefficient of 0.58 and 0.65, respectively, for each sub-region. Due to the 

strong relationship between Perkins’ skill score and Willmott’s index of agreement, only 

values obtained from Perkins’ method are used to calculate the ensemble weighted mean. 

 

2.2.4 SKILL DETERMINATION USING ROOT MEAN SQUARE ERROR AND 

MEAN ABSOLUTE ERROR 

 

The last two methods to aid in the validation of RCM data are root mean square 

error (RMSE) and mean absolute error (MAE) for temperature and precipitation. 

Equation 2.8 illustrates the computation of RMSE: 

      √
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where n is the number of values, yj are the observed values, and ŷj are the modeled 

values. Appendix B.4 provides an example R script used to calculate RMSE. Equation 

2.9 illustrates the computation of MAE, following the same notation as RMSE: 

     
 

 
∑|    ̂ |

 

   

 (2.9) 

 

Direct comparison of specific daily values from GCM-driven RCM runs were not 

compared to specific observational values (i.e., January 1, 1979 in the GCM-driven runs 

were not compared to January 1, 1979 in the observational record) to compute RMSE and 

MAE because although GCM-based runs have a date and time associated with the output, 

the output is simply a general time keeping measure. However, over the course of a 

lengthy climatology (20-30 years) the intra- and inter-annual variability shown in 

observations is also illustrated in the GCM-based climatology. For this reason, daily data 

values for each month within both sub-regions were sorted from lowest to highest with 

the assumption that general values found in the GCM-driven RCMs are found at some 

instance in the observational record of the same period. 

RMSE is commonly reported in the climatological/meteorological peer-reviewed 

literature to express model error and aid in quantifying model skill compared to 

observations. (Murphy and Epstein, 1989; Huffman, 1997; Yang and Arritt, 2002; Wu et 

al., 2005; Wilks, 2006; Seiler, 2009; Liu et al., 2012). Additionally, RMSE is a preferred 

method of expressing model accuracy because it not only includes contributions from 

each individual data point, but also includes any mean bias error (von Storch and Zwiers, 

1999; Stull, 2000; Wilks, 2006). However, Willmott and Matsuura (2005) argue mean 
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absolute error (MAE) should be reported because it represents a more natural measure of 

average error with a clearly defined meaning, something RMSE lacks. Both values 

indicate dimensional (i.e., °C for temperature and either percent or mm/day for 

precipitation) mean model error compared to observations; however, large errors have a 

relatively greater influence on RMSE than MAE. Both methods were chosen to represent 

mean model error/skill because a suite of measures is appropriate to gain a well-rounded 

assessment of skill (Willmott, 1981). Figure 2.7 provides an example of poor RMSE 

(Figure 2.7a) and excellent RMSE (Figure 2.7b). Additionally, examples of poor and 

excellent MAE would appear similar to RMSE. 

 
                                                                          a)  

 
                                                                         b) 

 

Figure 2.7. Example of poor RMSE (a) and excellent RMSE (b) for March maximum 

temperature from two NARCCAP ensemble members. Temperature on the x- and y-axis 

for both plots are in degrees Celsius. If model data matched observations exactly, the 

scatter plot will lie directly on the green dotted line. The solid red line represents linear 

regression trend line. 
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 If a model is able to simulate the exact trend found in observations, the 

scatterplots found in Figure 2.7 will demonstrate a straight line consistent with the dotted 

green line plotted in Figures 2.7a and 2.7b. The model with a high RMSE (Figure 2.7a) 

shows that it, in this case, under predicts maximum temperature at every step in the 

distribution while the model with low RMSE follows extremely closely to the dotted 

green line.  

Comparison of Perkins’ skill score and Willmott’s index of agreement provide 

similar measures of skill to RMSE-based skill for temperature (Figure 2.8 and 2.9). 

However, with respect to precipitation, Perkins’ and Willmott versus RMSE-based skill 

scores present virtually no correlation (Figure 2.10). Although not shown, comparison of 

Perkins and Willmott skill scores to MAE would be virtually identical to those found 

with RMSE since a strong relationship between RMSE and MAE exists (Willmott and 

Matsurra, 2005). This dichotomy is rooted in what each method is measuring. Perkins’ 

and Willmott’s skill computations compare how the distribution of the model and 

observations overlap, giving less weight to individual numbers and more weight to the 

overall distribution, while RMSE-based skill is the opposite in that individual numbers 

are less important than the data distribution. For non-Gaussian distributions (like the 

gamma distribution of precipitation), the correlation between Perkins’ and Willmott’s 

methods are low, illustrating how different metrics measure non-Gaussian distributions. 

For use in weighting future projections, RMSE was normalized to unit length 

using the R operator “normalize.vector” found within the “ppls” package (Kramer et al., 

2008). The normalized RMSE is used as the weight when calculating weighted ensemble 

means described in Sub-section 2.2.8. The normalized RMSE is expressed as one minus 
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the normalized RMSE so that low RMSE will be close to one after normalization (good 

skill) and high RMSE will be close to zero after normalization (poor skill). The 

relationship between RMSE and normalized RMSE (before taking one minus normalized 

RMSE) has a correlation of one and is illustrated in Appendix E along with the R script 

used to normalize RMSE. 

 



 

51 

 

 

 

 

Figure 2.8. Scatterplot of minimum temperature Perkins’ skill score, Willmott’s index of 

agreement, and RMSE for the east (a, c, and e) and west (b, d, and f) sub-regions. The 

straight red line indicates the linear regression line fit to the data. “R” values in the upper-

left of each figure represents the correlation between the skill metrics.  

 

a) b) 

c) d) 

e) f) 
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Figure 2.9. Scatterplot of maximum temperature Perkins’ skill score, Willmott’s index of 

agreement, and RMSE for the east (a, c, and e) and west (b, d, and f) sub-regions. The 

straight red line indicates the linear regression line fit to the data. “R” values in the upper-

left of each figure represents the correlation between the skill metrics. 

 

 

a) b) 

c) d) 

e) f) 
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Figure 2.10. Scatterplot of mean precipitation Perkins’ skill score, Willmott’s index of 

agreement, and RMSE for the east (a, c, and e) and west (b, d, and f) sub-regions. The 

straight red line indicates the linear regression line fit to the data. “R” values in the upper-

left of each figure represents the correlation between the skill metrics. 

 

a) b) 

c) d) 

e) f) 
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 Perkins skill score, Willmott’s index of agreement, RMSE, and MAE values are 

plotted in a modified Hovmöller diagram (Hovmöller, 1949) in Chapter 3 in which the x-

axis consists of the nine NARCCAP ensemble members for whom these values were 

calculated and the y-axis represents each month. Although the Hovmöller plot is 

commonly used to plot atmospheric waves moving longitudinally, latitudinally, or 

vertically over time, it can also be a convenient way to plot and display large quantities of 

data within a single diagram. The plots should be read beginning with from the upper-left 

corner and working toward the bottom. The y-axis begins with the month of December 

(rather than the first calendar month of January) so that each season is grouped together 

for easy diagnosis of low and high skill by month as well as season. Appendix B.5 

provides an example R script used to create a modified Hovmöller diagram. 

 Perkins skill score, Willmott’s index of agreement, RMSE, and MAE were the 

four preferred methods because the results of each calculation had the potential to 

provide either similar or completely opposing assessments of skill. Additionally, it was 

important to illustrate the short-comings of relying solely on one method for model skill 

determination, as each measure provides unique insight into model performance.  

 

2.2.5 MODEL BIAS VERSUS OBSERVATIONS 

Another important aspect of this research was to determine not only model skill, 

but also to evaluate why a model may lack skill. Kjellstrom et al. (2010) computed area-

average model bias at the 1
st
, 5

th
, 10

th
, 25

th
, 50

th
, 75

th
, 90

th
, 95

th
, and 99

th
 percentiles for 

each of their sub-regions, variables, and models. This method allows for determination of 

where, within the probability density function (or distribution), a model under or over 
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predicts a given variable, leading to degradation in skill. For example, a model with a 

warm temperature bias in the lower percentiles (the coldest days) may decrease the 

number of cold air outbreaks and potential decrease snow cover in the region during 

winter. A model with a warm summer bias in the upper percentiles could cause over 

prediction of heat waves and drought. Figure 2.11 illustrates January Southeast U.S. 

mean model bias for three NARCCAP RCMs. Perkins’ skill scores for the RCM3-GFDL 

and WRFG-CCSM3 models are reduced because of cold temperature bias at each 

percentile while the MM5I-CCSM3 model has a slight warm bias in the lower 

percentiles, while showing virtually no other bias in the rest of the PDF, leading to higher 

skill than the other RCMs. Appendix B.6 provides an example R script used to calculate 

and create the percentile plots for this dissertation work. 

 
Figure 2.11. January Southeast U.S. mean model temperature bias during the reference 

period for the RCM3-GFDL (1), WRFG-CCSM (2), and the MM5I-CCSM (3) 

NARCCAP RCMs. 
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In addition to investigating temperature and precipitation biases using percentile 

plots, several variables in the NARR dataset were compared against corresponding 

variables output by the NARCCAP RCMs, which included soil moisture content, latent 

heat flux, sensible heat flux, total cloud cover, 500-mb height, and sea-level pressure. 

Each variable was averaged monthly for each sub-region and a time series from January 

1979 to December 1999 was plotted to calculate the overall bias in each of the variables 

in comparison to NARR, and to see if the model was able to simulate the month-to-month 

variability found in observations. Additionally, these plots allowed for the determination 

of whether extreme conditions (droughts or floods) observed in a particular month were 

translated into the models. 

 

2.2.6 DETERMINATION OF VALUE ADDED THROUGH DOWNSCALING 

This work determines if downscaling provides a positive impact a slightly 

different way from the two Di Luca pieces cited above. Di Luca’s methodology is similar 

to this dissertation in that value added is determined by calculating the difference 

between RCM skill and GCM skill used for LBCs. This dissertation, however, utilizes 

daily observations and calculates value added on a month-by-month basis, while Di Luca 

utilizes monthly mean observations and calculates value added on a season-by-season 

basis. Another major short-coming of the Di Luca studies are they determine value added 

by finding the difference between the squared error of the GCM providing LBCs to the 

RCM, wherein if the squared error of the RCM was smaller than the squared error of the 

GCM, value was added.  
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 The three GCMs were re-gridded using a nearest-neighbors algorithm in CDO 

and the same grid points displayed in Figure 2.5 were extracted. Then, Perkins skill 

scores, Willmott’s index of agreement, root mean square and mean absolute errors were 

computed. In the final step, monthly Perkins skill scores, Willmott’s index of agreement, 

RMSE, and MAE values from each GCM were subtracted from each NARCCAP RCM 

simulation. If the skill values from any of the three metrics from the NARCCAP 

members were greater than the GCM values, it was determined that downscaling 

provided value; however, if the GCM proved superior, value was not added through the 

downscaling process. Obviously, there will be cases where downscaling does not provide 

value. It was hypothesized that downscaling precipitation would add more value than 

downscaling temperature because precipitation initialization and formation takes place on 

scales not resolved by GCMs; however, GCMs are able to skillfully replicate meso- and 

synoptic-scale processes which primarily drive temperature. 

 

2.2.7 DETERMINING THE EFFECTIVE NUMBER OF ENSEMBLE MEMBERS 

A common and often violated rule of model independence between ensemble 

members plagues the meteorological and climatological fields (Masson and Knutti, 

2011). Typically, the purpose of creating an ensemble is to gain as much information as 

possible while hoping to reduce errors associated with individual member models and 

creating a consensus which can then be conveyed to users to make more informed 

decisions. Often there is an overlap in RCMs and/or GCMs used within an ensemble 

violating the notion of model independence. While RCMs might have different physics 

packages, they could be driven by the same GCM. There is a point in which the effective 
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number of models is reached (Pennell and Reichler, 2010), ensemble model 

independence is not met, and the resulting predictions are more likely than not to be 

biased toward a false ensemble mean. Since reducing the effective number of ensemble 

members to a bare minimum will not provide a realistic understanding of the range of 

potential climate outcomes (Knutti, 2008), a common ground should be sought to 

incorporate as many models as possible without violating independence. Although the 

NARCCAP team intends for users to utilize a subset of the members available in the 

ensemble, the hierarchical cluster analysis allows users to make an educated decision on 

how many and which members to include from the NARCCAP ensemble in their 

assessment. 

 To determine the effective number of models within this work, a hierarchical 

clustering analysis was performed in which models that have strong similarities will 

cluster together. Daily data extracted for all months from the NARCCAP ensemble 

members, Maurer’s observed dataset, and the three GCMs providing LBCs were merged 

together to create a single data frame. This was done for three reasons: 1) To determine 

which RCMs exhibited strong similarities, 2) Determine if RCMs clustered with GCMs 

providing LBCs, and 3) Determine if observations tended to cluster around certain RCMs 

and/or GCMs. To perform the clustering analysis, the R package “pvclust” (Suzuki and 

Shimodaira, 2006) was utilized (see Appendix B.7 for sample R script). Suzuki and 

Shimodaira’s R package uses a distance and clustering method specified by the user to 

cluster columns of data from within a data frame. Additionally, the package calculates p-

values for each clustered pair via multi-scale bootstrap resampling on each of the 

columns within a user’s dataset, giving an indication of the strength of the cluster 
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supported by raw data. In this work, Ward’s hierarchical clustering method (Ward, 1963) 

was utilized. Ward’s method begins with 13 one-member clusters (nine NARCCAP 

members, one observed dataset, and three GCMs) and stepwise merges two clusters until 

all metrics belong to a single cluster. Clusters are formed using the Euclidean distance 

metric between two points of data, which takes a similar form to RMSE when calculated 

in a two-dimensional space (Equation 2.10; adapted from Wilks, 2006): 

||   ||   √∑(     ) 

 

   

 (2.10) 

 

where x is one NARCCAP ensemble member (for instance), y is another NARCCAP 

ensemble member (for instance), xk is the raw data contained within x, yk is the raw data 

contained within y, and K is the number of geometric dimensions (K=2 in this work 

because both time and the variable of interest [temperature or precipitation] make up the 

geometric dimensions). Ward’s linkage and Euclidean distance are standard methods of 

utilizing hierarchical clustering in meteorology and climatology (Pennell and Reichler, 

2010; Masson and Knutti, 2011). 

A dendrogram is created to illustrate the relationship between each of the regional 

climate models and driving GCMs (and/or observations), in which clusters with high 

similarity are coupled toward the bottom of the diagram (lowest height) and the least 

similar clusters are attached within the dendrogram as height increases in the positive y-

direction. Suzuki and Shimodaira’s R package (pvlust) provides not only the dendrogram 

plot, but also plots the approximately unbiased (AU) p-value, bootstrap probability (BP), 

and the order in which the clusters were made. AU and BP are discussed at length in 
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Shimodaira (2002), Shimodaira (2004), and Suzuki and Shimodaira (2006). The 

“pvclust” package assesses the uncertainty in hierarchical cluster analysis. For each 

cluster in the hierarchical clustering, quantities called p-values are calculated via 

multiscale bootstrap resampling. The p-value of a cluster has a value between 0 and 1, 

which indicates how strong the cluster is supported by data. The approximately 

unbiased p-value, computed by multiscale bootstrap resampling, is a better approximation 

to the unbiased p-value than the bootstrap probability value computed by normal 

bootstrap resampling. (Suzuki and Shimodaira (2006). The “pvclust” package performs 

hierarchical cluster analysis via the “hclust” R statistical function and automatically 

computes p-values for all clusters contained in the clustering of original data. The 

“hclust” function (and thus the “pvclust” package) performs a hierarchical cluster 

analysis using a set of dissimilarities for the n objects being clustered. Initially, each 

object is assigned to its own cluster and then the algorithm proceeds iteratively, at each 

stage joining the two most similar clusters, continuing until there is just a single cluster. 

At each stage distances between clusters are recomputed by the Lance–Williams 

dissimilarity update formula according to the particular clustering method being used (in 

this dissertation Ward’s method utilizing Euclidean distance). The Lance-Williams 

dissimilarity update formula calculates the dissimilarities between a new cluster and 

existing points, based on the dissimilarities prior to forming new clusters. 

To validate clusters formed in the hierarchical cluster analysis, a non-metric 

multidimensional scaling technique was utilized (Venables and Ripley, 2002). The non-

metric multidimensional scaling technique utilized the “isoMDS” package in R which 

uses Kruskal’s non-metric multidimensional scaling (Kruskal, 1964) to find similarities 
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(and dissimilarities) between data. Multidimensional scaling (MDS) assigns Euclidean 

coordinates to a dataset such that given a set of dissimilarity, similarity, or ordinal 

relations between data points, the relations are obeyed as closely as possible by each 

model member while making few assumptions about the nature of the data. Non-metric 

multidimensional scaling (NMDS) is an ordination technique in which the MDS 

algorithm finds a configuration of points whose distances reflect as closely as possible 

the rank order of the data (Agarwal et al., 2009). In order words, the NMDS will 

ordinally rank data points according to their similarity and will distance (and rank further 

away) data points which show higher dissimilarity. 

Based on information obtained on model skill and the effective number of 

models, a smaller ensemble was created and new ensemble mean, median, 25
th

 percentile, 

and 75
th

 percentile values were computed. Models from the greater NARCCAP ensemble 

were chosen by month based on their skill. In other words, if the hierarchical cluster 

analysis shows RCMs clustering around similar GCMs, the RCM with the highest skill in 

a given month would be the model chosen for the smaller ensemble. This allowed for the 

fulfillment of inter-ensemble independence while still providing relevant and useful 

information on ensemble central tendency and spread. 

The use of hierarchical clustering in the meteorological and climatological 

community is relatively new (e.g., Pennell and Reichler, 2010; Johnson et al., 2011a; 

Johnson et al., 2011b; Masson and Knutti, 2011; Yokoi et al., 2011; Riccio et al., 2012); 

however it is being embraced as a simple, yet effective way, of finding similarities 

between models and reducing the number ensemble members used for providing 
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ensemble-based projections. With ensemble modeling becoming the “norm” in 

meteorology and climatology, the use of hierarchical clustering will surely increase. 

 

2.2.8 FUTURE CLIMATE CHANGE PROJECTIONS 

Research question two – to determine future changes of minimum and maximum 

temperature and mean precipitation for the Southeast U.S – involved computing 

differences in temperature for reference climate simulations from future projections, 

while precipitation is expressed as percent of change from the reference to the future 

period. Equations 2.11 and 2.12 illustrate how temperature and precipitation change were 

computed,  

              (2.11) 

 

    (
         

    
)      (2.12) 

 

where Tfut and Pfut represent future temperature and precipitation, respectively, and Tref 

and Pref represent reference period temperature and precipitation, respectively. 

Expressing precipitation change as a percentage is common practice in meteorology and 

climatology (IPCC, 2007) as absolute values of precipitation change do not adequately 

allow for comparison between regions with differing climate classifications. 
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Table 2.5. Calculations performed, the data frequency used for each computation, and the 

equation number used in computing each calculation. 

 

Computation Data Frequency Equation Number 

Potential 

Evapotranspiration 
Monthly Equations 2.2 through 2.4 

Perkin’s skill score Daily Equation 2.5 

Willmott’s index of 

agreement 
Daily Equation 2.7 

RMSE Daily Equation 2.8 

MAE Daily Equation 2.9 

Bias/Percentile – 

Temperature 
Daily Same form as Equation 2.11 

Bias/Percentile - 

Precipitaiton 
Daily Same form as Equation 2.12 

Future Temperature 

Change 
Monthly Equation 2.11 

Future Precipitation 

Change 
Monthly Equation 2.12 

 

 

 

 To test if modeled change from the reference period to the future period was 

statistically significant, a nonparametric bootstrap was employed. The bootstrap is an 

approach to statistical inference that makes few assumptions about the underlying 

probability distribution that describes the data (Wilks, 2006) and is commonly used in 

both the meteorology (e.g., Livezey and Chen, 1983; Hamill, 1999; and Xu, 2006) and 

climatology climatology (e.g., Zwiers, 1990; Beersma and Buishand, 1999; von Storch 

and Zwiers, 1999; Huntingford et al., 2003; and Wilks, 2006) fields. This approach 

assumes the sample distribution is a good estimate of the population distribution and does 

not depend on the sample and population distributions being normally distributed. Using 

the data as an approximation to the population’s distribution, data are resampled 
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randomly with replacement from the modeled dataset to create an estimate to the 

population distribution.  

A sample R script used to perform the bootstrap significance testing is provided in 

Appendix B.8. Data passed to the R script included monthly sub-region-based means for 

the historical reference and future periods (for each grid point) and 30-year mean change 

values aggregated over each sub-region (as described above). The script performed the 

nonparametric bootstrap in the following order: 

1) Generate a sample dataset for minimum and maximum temperature and 

mean precipitation by sampling with replacement n=162 for the east 

sub-region (number of grid points in the east sub-region) and n=168 

times for the west sub-region (number of grid points in the west sub-

region). This was done for the historical reference and future periods. 

2) Calculate the aggregated mean for both time periods for each sub-

region. 

3) Use Equation 2.8 to calculate temperature change and Equation 2.9 to 

calculate precipition change for both time periods. 

4) Perform steps 1) through 3) 10,000 times to generate a sample PDF of 

changes projected through the bootstrapping process.  

To find if the aggregated mean change from the models for each sub-region were 

statistically significant, percentiles were computed based on the bootstrapped-based 

“change” distributions at the 0.5
th

, 2.5
th

, 5
th

, 95
th

, 97.5
th

, and 99.5
th

 percentiles (providing 

the equivalent to a two-tailed t-test). From these percentiles, where the modeled change 

fell within the bootstrap-generated sample distribution determined how statistically 
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significant the change was, if any (i.e., if the aggregated 30-year change reported in 

Chapter 4 was less than the 2.5
th

 percentile but greater than 0.5
st
 percentile of the 

bootstrap-generated distribution, change was considered statistically significant at the 

α=0.05 level).  

The null hypothesis with this type of testing states, the difference between 

historical temperature and precipitation values are similar to future values expressed in 

the models. The levels of significance, called α, are chosen in this dissertation to be 0.1, 

0.05, and 0.01. The α-value is the probability of rejecting the null hypothesis when it is 

true, which is called a “type I error”. As the α-level decreases, the probability of 

committing a type I error decreases. If one fails to reject the null hypothesis when the null 

hypothesis is not true, this is called a “type II error” (Ott and Longnecker, 2010). The 

probability of making a type II error (called β) decreases as the sample size increases 

(Xu, 2006).  

Weighted ensemble mean change was computed for each sub-region by utilizing 

the monthly model Perkins’ skill scores and RMSE values computed based on the 

procedures found in subsections 2.2.2 and 2.2.3. Equation 2.13 illustrates the 

computation of weighted mean ensemble change, 

 

       
[        ]  [        ]     [        ]

            
 (2.13) 

 

where meann represents the unweighted mean change from the n
th

 ensemble member and 

wn represents the weight garnered from either Perkins’ skill score or RMSE. 
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Weighting allowed models that accurately simulated the reference period to have 

more weight in the ensemble mean than those models lacking skill (Perkins et al., 2012). 

Additionally, weighted ensemble mean change was applied at each grid point to allow for 

investigation of changes at a finer scale across the entire Southeast U.S. Both weighted 

and unweighted projections are presented because there continues to be contentious 

debate on the proper use of weighting models from an ensemble (Weigel et al., 2010); 

however, if much is known about the individual models, such as the relative contribution 

of individual model errors and model noise, generating biased weights can be avoided 

(Christensen et al., 2010).  

A series of maps were generated for monthly temperature and precipitation to 

illustrate the spatial distribution of weighted and unweighted mean change using the Grid 

Analysis and Display System (GrADS) (Doty and Kinter, 1992; Doty and Kinter 1993). 

Lastly, box and whisker plots for each month, sub-region, and variable were generated to 

illustrate weighted and unweighted mean change for the two sub-regions as well as the 

associated spread between the models (Warner, 2011), with the lowest and highest 

projected mean change represented by the whiskers of the boxplot. Each model’s grid 

points (for each sub-region) contributed to the box and whisker plots.  

In summary, data used this work and described in this chapter included the 

NARCCAP dynamically downscaled ensemble, the Maurer gridded observed dataset, and 

the NARR dataset. The Maurer dataset is used to assess the skill of individual 

NARCCAP members in reproducing daily minimum and maximum temperature and 

mean precipitation, by month, utilizing four statistically-based skill metrics including 

Perkin’s overlapping PDF method, Willmott’s index of agreement, root mean square 
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error, and mean absolute error. Additionally, model bias was assessed by observing 

differences in various percentiles (1
st
, 5

th
, 10

th
, 25

th
, 50

th
, 75

th
, 90

th
, 95

th
, and 99

th
) within 

the modeled and observed distributions. The NARR dataset is used to gain insights into 

the atmospheric system issues within each model at differing scales from the micro- to 

the synoptic-scale. The methodology for determining “value added” in the downscaling 

process was also described. Finally, calculation procedures of future model proejctions of 

minimum and maximum temperature and mean precipitation were outlined. The results 

of each of these metrics and methods are presented in the ensuing two chapters. 
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CHAPTER 3 

NARCCAP MODEL VALIDATION 

3.1 VALIDATION AND MODEL SKILL IN A HISTORICAL REFERENCE 

PERIOD 

 

In this chapter, I evaluate NARCCAP model performance during the historical 

reference period. Perkins skill scores, Willmott’s index of agreement, RMSE, and MAE 

values are presented for each month and model along with percentile plots to aid in 

determining degradation in model skill based on biases within their respective 

distributions. Values considered owning to high model skill for each metric and climate 

variable are defined in Table 3.1. 

 

Table 3.1. Values considered owning to high skill for each of the four skill metrics. 

Skill Metric High Skill Threshold 

Perkins skill score 0.7 – 1.0 (temperature and precipitation) 

Willmott’s index 

of agreement 
0.5 – 1.0 (temperature and precipitation) 

RMSE 
0.0 – 2.0°C (temperature) 

0.0 – 2.0 mm day
-1

 (precipitation) 

MAE 
0.0 – 2.0°C (temperature) 

0.0 – 2.0 mm day
-1

 (precipitation) 
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3.1.1 MINIMUM TEMPERATURE 

Validation of NARCCAP ensemble members for minimum temperature reveal 

that, overall, each member performs well in replicating observed conditions. Perkins skill 

scores for most RCMs (with the exception of theWRFG models, and RCM3-GFDL and 

ECP2-GFDL) remain above 0.7 for each month with Willmott values mostly above 0.5 

for each NARCCAP ensemble member and month in the east (Figure 3.1 and 3.2; Table 

C.1 and C.2 in Appendix C) and west (Figure 3.4 and 3.5; Table C.3 and C.4 in Appendix 

C) sub-regions. RMSE and MAE values typically fall below 3°C for most models. For 

the WRFG RCMs, ECP2-GFDL, and GFDL-timeslice, July and August shows the worst 

skill. The degradation in skill for the WRFG RCMs and ECP2-GFDL are attributed to a 

cold bias between 1° to 3°C (Figure 3.3h and 3.3i). Additionally, the WRFG model 

illustrates a slight cold bias in the same months for the NCEP-driven runs found in Figure 

H.1 (Appendix H). The ECP2-GFDL’s cold bias in July and August must be a function of 

the GFDL LBCs, as the NCEP-driven runs of the ECP2 model illustrate a warm bias in 

all months between 1° and 4°C (Figure H.1). The GFDL-timeslice, on the other hand, 

exhibits a warm bias of 2° to 5°C from the 50
th

 through 99
th

 percentiles. The best 

performing models are the RCM3-CGCM3 and CRCM-CGCM3 which show very little 

warm or cold bias, remaining within ±2°C of observations across all percentiles and 

months, and only a 1° to 2°C warm bias in the NCEP-driven runs. Although a bias of 1° 

to 2°C may seem rather large, it falls within a commonly known and accepted threshold 

in climate models (e.g., Randall et al., 2007; John and Soden, 2007). 

 Interestingly, the two models driven by GFDL exhibit degradation in skill in the 

winter and early spring, an observation not found in the other ensemble members. 
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Percentile plots reveal these RCMs suffer from significant cold bias between 4° and 8°C. 

This strong cold bias is passed from the GFDL model to each RCM, and is portrayed in 

Figure F.1. Conversely, the CCSM GCM exhibits a warm bias in most months between 

1° and 5°C which is tempered slightly in the downscaling process by both the MM5I and 

CRCM, resulting in a slight warm bias of not more than 2°C in any given.  
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Figure 3.1. Hovmöller diagram of minimum temperature Perkins skill score (a) and 

Willmott’s index of agreement (b) for the east sub-region. Abbreviations for NARCCAP 

ensemble members and GCMs: “MM5I-CC”=MM5I-CCSM, “RCM3-GF”=RCM3-

GFDL, “ECP2-GF”=ECP2-GFDL, “WRFG-CC”=WRFG-CCSM, “WRFG-

CG3”=WRFG-CGCM3, “RCM3-CG3”=RCM3-CGCM3, “CRCM-CG3”=CRCM-

CGCM3, “CRCM-CC”=CRCM-CCSM”, “GFDL-TS”=GFDL-Timeslice, 

“CCSM”=CCSM GCM, “GFDL”=GFDL GCM, and “CGCM3”=CGCM3 GCM. 
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Figure 3.2. Hovmöller diagram of minimum temperature RMSE (a) and MAE (b) for the 

east sub-region. Abbreviations for NARCCAP ensemble members and GCMs: “MM5I-

CC”=MM5I-CCSM, “RCM3-GF”=RCM3-GFDL, “ECP2-GF”=ECP2-GFDL, “WRFG-

CC”=WRFG-CCSM, “WRFG-CG3”=WRFG-CGCM3, “RCM3-CG3”=RCM3-CGCM3, 

“CRCM-CG3”=CRCM-CGCM3, “CRCM-CC”=CRCM-CCSM”, “GFDL-TS”=GFDL-

Timeslice, “CCSM”=CCSM GCM, “GFDL”=GFDL GCM, and “CGCM3”=CGCM3 

GCM. 
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Figure 3.3. Percentile plots of minimum temperature bias for the east sub-region from 

nine NARCCAP members for December (a), January (b), February (c), March (d), April 

(e), May (f), June (g), July (h), August (i), September (j), October (k), and November (l). 

Labels for the NARCCAP ensemble members: “1”=MM5I-CCSM, “2”=RCM3-GFDL, 

“3”=ECP2-GFDL, “4”=WRFG-CCSM, “5”=WRFG-CGCM3, “6”=RCM3-CGCM3, 

“7”=CRCM-CGCM3, “8”=CRCM-CCSM, and “9”=GFDL-timeslice. 
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Figure 3.4. Hovmöller diagram of minimum temperature Perkins skill score (a) and 

Willmott’s index of agreement (b) for the west sub-region. Abbreviations for NARCCAP 

ensemble members and GCMs: “MM5I-CC”=MM5I-CCSM, “RCM3-GF”=RCM3-

GFDL, “ECP2-GF”=ECP2-GFDL, “WRFG-CC”=WRFG-CCSM, “WRFG-

CG3”=WRFG-CGCM3, “RCM3-CG3”=RCM3-CGCM3, “CRCM-CG3”=CRCM-

CGCM3, “CRCM-CC”=CRCM-CCSM”, “GFDL-TS”=GFDL-Timeslice, 

“CCSM”=CCSM GCM, “GFDL”=GFDL GCM, and “CGCM3”=CGCM3 GCM. 
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Figure 3.5. Hovmöller diagram of minimum temperature RMSE (a) and MAE (b) for the 

west sub-region. Abbreviations for NARCCAP ensemble members and GCMs: “MM5I-

CC”=MM5I-CCSM, “RCM3-GF”=RCM3-GFDL, “ECP2-GF”=ECP2-GFDL, “WRFG-

CC”=WRFG-CCSM, “WRFG-CG3”=WRFG-CGCM3, “RCM3-CG3”=RCM3-CGCM3, 

“CRCM-CG3”=CRCM-CGCM3, “CRCM-CC”=CRCM-CCSM”, “GFDL-TS”=GFDL-

Timeslice, “CCSM”=CCSM GCM, “GFDL”=GFDL GCM, and “CGCM3”=CGCM3 

GCM. 
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Percentile plots for the west sub-region (Figure 3.6) reveal the RCM3-GFDL and 

ECP2-GFDL models have a more pronounced cold bias than the eastern sub-region, with 

cold biases from December through March on the order of 4° to 10.5°C for the lower 50
th

 

percentiles. The cold bias must be a function of the GFDL LBCs as both the ECP2 and 

RCM3 RCMs have a warm bias of 1° to 3°C from December through March with the 

NCEP-driven runs (Figure H.2). Conversely, the GFDL-timeslice’s warm bias observed 

in the east sub-region is enhanced in the west sub-region. What was a 2° to 5°C warm 

bias in above-median temperatures in the east becomes a 3° to 8°C warm bias in the west, 

the result of a strong warm bias in the same percentiles with the driving GCM (Figure 

F.2). This bias during the warmest months of the year, especially in the upper percentiles, 

leads to an increase in nocturnal evaporation from the soil (Novick, et al., 2009). 

Enhanced nocturnal evaporation aids rapid daytime temperature increases and contribute 

to an increased number of heat waves, leading to a positive feedback wherein evaporation 

is increased leading to drier soil (assuming little to no replenishment) which perpetuates 

the warm cycle (Trenberth, 2008).  
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Figure 3.6. Percentile plots of minimum temperature bias for the west sub-region from 

nine NARCCAP members for December (a), January (b), February (c), March (d), April 

(e), May (f), June (g), July (h), August (i), September (j), October (k), and November (l). 

Labels for the NARCCAP ensemble members: “1”=MM5I-CCSM, “2”=RCM3-GFDL, 

“3”=ECP2-GFDL, “4”=WRFG-CCSM, “5”=WRFG-CGCM3, “6”=RCM3-CGCM3, 

“7”=CRCM-CGCM3, “8”=CRCM-CCSM, and “9”=GFDL-timeslice. 
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3.1.2 MAXIMUM TEMPERATURE 

Unlike minimum temperature which proves relatively skillful for almost all 

NARCCAP members, maximum temperature is less skillful with higher errors/bias in 

both sub-regions. The most glaring short-comings are the lack of skill and high RMSE 

and MAE values shown by the RCM3-GFDL and ECP2-GFDL (Figures 3.7, 3.8, 3.10, 

and 3.11; Tables C.5 through C.8). The low skill values are attributed to a cold bias in the 

GFDL GCM (Figure F.3 and F.4) from winter through mid spring between 3°C and 7°C. 

Although two models with the same LBCs show relatively little skill in replicating daily 

maximum temperature and have high RMSE and MAE values, the fact the RCM3-

CGCM3 illustrates relatively little skill points to a systematic error within the RCM3 

itself, and is not simply an issue of the GCM providing biased LBCs. This point will be 

discussed further in Section 3.2. Conversely, the CRCM-CCSM suffers a reduction in 

skill from July through September, a direct result of the model exhibiting a strong warm 

bias from the 50
th

 percentile to the 99
th

 percentile and a lesser warm bias in the 1
st
 

through 50
th

 percentiles. Part of the warm bias can be attributed to the CCSM GCM 

(Figure F.4) which shows a warm bias from the 50
th

 through the 99
th

 percentiles and a 

slight warm bias of less than 2°C from the 1
st
 through 50

th
 percentiles while the other part 

is attributed to the strong warm bias observed with the NCEP-driven runs of the CRCM 

observed over the same period. 

 Percentile plots (Figure 3.9 and 3.12) highlight the significant cold bias found 

within the GFDL-based NARCCAP ensemble members, leading to low skill scores and 

high RMSE and MAE values. Most months exhibit a cold bias on the order of 4°C with 

values as low as 9° and 10°C in winter. Four of the nine NARCCAP members have a 
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cold bias greater than 4°C during the months encompassing boreal winter, spring, and 

mid to late fall. The cold bias observed with the GCM-driven runs is partially attributed 

to the persistent cold bias observed in most months (and percentiles) for each RCM 

driven with NCEP LBCs (Figure H.3). Percentile plots also reveal the CRCM-CCSM 

suffers from a warm bias, most pronounced from June through September with the largest 

warm bias occurring from the 50
th

 to 99
th

 percentiles. 

 An interesting comparison between the GFDL-driven (RCM-based runs) and the 

GFDL-timeslice reveals the GFDL-timeslice typically outperforms the RCM-driven 

GFDL runs, with higher skill-based values and lower error/bias values. This can be 

attributed to the timeslice experiment utilizing observed sea-surface conditions rather 

than GCM-based sea-surface conditions. By applying observations into the model, the 

model is “nudged” closer to solution found in observations rather than allowing the GCM 

to completely control the simulation. Additionally, it should be noted that the separation 

of skill and bias metrics of the GFDL-driven models are not widely separated with 

respect to minimum temperature, potentially revealing that the inclusion of observed sea-

surface conditions impacts maximum temperatures more than minimum temperatures. 

The most consistent and least bias model in both sub-regions is the MM5I-CCSM 

with Perkins skill scores and Willmott values exceeding 0.75, and low RMSE and MAE 

values between 0.5° and 2°C. Percentile plots concur with the MM5I-CCSM’s 

skillfulness by showing the model rarely deviates beyond ±2°C from observations across 

all percentiles. The only months in which the MM5I-CCSM observes a small deviation in 

skill are December, August, and November when the model exhibits a consistent bias 

throughout all percentiles (slight cold bias in December and November; slight warm bias 
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in August). The MM5I-CCSM is the only model (with respect to temperature) to attain 

Perkins skill scores of greater than 0.9 for at least eight months, Willmott values of 0.85 

for at least eight months, and RMSE and MAE values less than 1.5°C for 10 months. 

 
 

Figure 3.7. Hovmöller diagram of maximum temperature Perkins skill score (a) and 

Willmott’s index of agreement (b) for the east sub-region. Abbreviations for NARCCAP 

ensemble members and GCMs: “MM5I-CC”=MM5I-CCSM, “RCM3-GF”=RCM3-

GFDL, “ECP2-GF”=ECP2-GFDL, “WRFG-CC”=WRFG-CCSM, “WRFG-

CG3”=WRFG-CGCM3, “RCM3-CG3”=RCM3-CGCM3, “CRCM-CG3”=CRCM-

CGCM3, “CRCM-CC”=CRCM-CCSM”, “GFDL-TS”=GFDL-timeslice, 

“CCSM”=CCSM GCM, “GFDL”=GFDL GCM, and “CGCM3”=CGCM3 GCM. 
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Figure 3.8. Hovmöller diagram of maximum temperature RMSE (a) and MAE (b) for the 

east sub-region. Abbreviations for NARCCAP ensemble members and GCMs: “MM5I-

CC”=MM5I-CCSM, “RCM3-GF”=RCM3-GFDL, “ECP2-GF”=ECP2-GFDL, “WRFG-

CC”=WRFG-CCSM, “WRFG-CG3”=WRFG-CGCM3, “RCM3-CG3”=RCM3-CGCM3, 

“CRCM-CG3”=CRCM-CGCM3, “CRCM-CC”=CRCM-CCSM”, “GFDL-TS”=GFDL-

timeslice, “CCSM”=CCSM GCM, “GFDL”=GFDL GCM, and “CGCM3”=CGCM3 

GCM. 
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Figure 3.9. Percentile plots of minimum temperature bias for the east sub-region from 

nine NARCCAP ensemble members for December (a), January (b), February (c), March 

(d), April (e), May (f), June (g), July (h), August (i), September (j), October (k), and 

November (l). Labels for the NARCCAP ensemble members: “1”=MM5I-CCSM, 

“2”=RCM3-GFDL, “3”=ECP2-GFDL, “4”=WRFG-CCSM, “5”=WRFG-CGCM3, 

“6”=RCM3-CGCM3, “7”=CRCM-CGCM3, “8”=CRCM-CCSM, and “9”=GFDL-

Timeslice.  
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Figure 3.10. Hovmöller diagram of maximum temperature Perkins skill score (a) and 

Willmott’s index of agreement (b) for the west sub-region. Abbreviations for NARCCAP 

ensemble members and GCMs: “MM5I-CC”=MM5I-CCSM, “RCM3-GF”=RCM3-

GFDL, “ECP2-GF”=ECP2-GFDL, “WRFG-CC”=WRFG-CCSM, “WRFG-

CG3”=WRFG-CGCM3, “RCM3-CG3”=RCM3-CGCM3, “CRCM-CG3”=CRCM-

CGCM3, “CRCM-CC”=CRCM-CCSM”, “GFDL-TS”=GFDL-timeslice, 

“CCSM”=CCSM GCM, “GFDL”=GFDL GCM, and “CGCM3”=CGCM3 GCM. 
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Figure 3.11. Hovmöller diagram of maximum temperature RMSE (a) and MAE (b) for 

the west sub-region. Abbreviations for NARCCAP ensemble members and GCMs: 

“MM5I-CC”=MM5I-CCSM, “RCM3-GF”=RCM3-GFDL, “ECP2-GF”=ECP2-GFDL, 

“WRFG-CC”=WRFG-CCSM, “WRFG-CG3”=WRFG-CGCM3, “RCM3-CG3”=RCM3-

CGCM3, “CRCM-CG3”=CRCM-CGCM3, “CRCM-CC”=CRCM-CCSM”, “GFDL-

TS”=GFDL-timeslice, “CCSM”=CCSM GCM, “GFDL”=GFDL GCM, and 

“CGCM3”=CGCM3 GCM. 
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Figure 3.12. Percentile plots of minimum temperature bias for the west sub-region from 

nine NARCCAP ensemble members for December (a), January (b), February (c), March 

(d), April (e), May (f), June (g), July (h), August (i), September (j), October (k), and 

November (l). Labels for the NARCCAP ensemble members: “1”=MM5I-CCSM, 

“2”=RCM3-GFDL, “3”=ECP2-GFDL, “4”=WRFG-CCSM, “5”=WRFG-CGCM3, 

“6”=RCM3-CGCM3, “7”=CRCM-CGCM3, “8”=CRCM-CCSM, and “9”=GFDL-

Timeslice. 
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3.1.3 MEAN PRECIPITITATION 

Results of skill associated with mean precipitation for the NARCCAP RCMs 

greatly depend on the metrics used to quantify skill. As discussed in Sub-section 2.2.4, no 

discernible relationship between Perkins/Willmott scores and RMSE/MAE for 

precipitation can be found, indicating the metrics quantitatively measure non-Gaussian, 

with outliers having a much larger impact in the calculation of RMSE and MAE than in 

Perkins or Willmotts’ methods. Very rarely is a models’ Perkins or Willmott skill score 

below 0.8, indicating the models are able to adequately reproduce the daily data 

distribution found in observations, especially considering most data points are contained 

within the left tail of the distribution, with a very small number comprising the right tail 

of the distribution. However, a high RMSE and MAE, coupled with high Perkins skill 

score, indicates the model either under- or over-predicts the quantity and/or frequency of 

precipitation events in the upper percentiles (from 75
th

 through 99
th

-percentile). Although 

the upper percentiles account for an extremely small portion of the data distribution 

(while still having a large impact on daily total rainfall), their impact on RMSE and MAE 

is significant because these values are large outliers from the mean. Save for a few 

exceptions, most of the models have Perkins skill scores which exceed 0.8, with several 

in the 0.85 to 0.95 range for both sub-regions (Figure 3.13 and Table C.9). Additionally, 

Willmott index of agreement values (Table C.10) are mostly contained within the 0.82 to 

0.96 range.  

The only models to exhibit degradation in Perkins and Willmott skill scores in the 

east sub-region are the CRCM-CGCM3 and CRCM-CCSM in September and October, 

with Perkins skill scores between 0.7 and 0.8 (save for CRCM-CGCM3’s September 
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Perkins skill score between 0.8 and 0.85) and Willmott values between 0.75 and 0.85. 

Percentile plots (Figure 3.15) reveal the CRCM RCMs exhibit a dry bias across all 

percentiles, but is most pronounced from the 50
th

 through 99
th

 percentiles and ranges 

between 30 and 60% below observations. A similar dry bias is observed from the winter 

through mid spring and fall for the NCEP-driven runs of the CRCM (Figure H.5). In 

terms of real numbers, assume the 75
th

 percentile value from observations was 100 

mm/day, a 30 to 60% dry bias would mean the model predicts the 75
th

 percentile value to 

fall between 40 and 70 mm/day. RMSE and MAE values are hurt not only by the quantity 

of model bias, but also the number of percentiles in which the model exhibits said bias.  

  The west sub-region performs slightly worse than the east sub-region with 

regards to Perkins and Willmott scores, however, RMSE and MAE values are higher for 

most models, particularly in the winter and spring months (Figure 3.16 and 3.17; Table 

C.11 and C.12). Percentile plots (Figure 3.18) reveal from December through May, most 

all models have a dry bias in the lower 50
th

 percentiles between 5 and 30%. Although 

Perkins and Willmott scores are respectable during this period (between 0.8 and 0.9 for 

both, respectively), indicating the models are able to replicate the daily precipitation 

pattern, they fail to generate lighter precipitation found in the bottom half of the 

distribution. This under-estimation can lead to sustained water issues because 

precipitation values found within the first half of the PDF are responsible for the majority 

over observed precipitation.  

GCM-based percentile plots (Figure F.5) illustrate all three models stay within a 

bias of ±15% below the 50
th

 percentile, steadily increasing to a dry bias between 20 and 

65% at the 99
th

 percentile. Most RCMs, save for those run by the CCSM GCM, are able 
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to take input from their GCM and curb the dry bias at the higher percentiles, however, 

some models over compensate and what was once a dry bias within the GCM becomes a 

wet bias of the same magnitude in the RCM. This finding is attributed to the wet bias 

observed consistently in the ECP2, MM5I, and WRFG NCEP-driven models (Figure H.5) 

for all months. Additionally, the RCM3-NCEP model illustrates a pronounced wet bias in 

the highest percentiles from spring through mid summer. Given the findings from this 

sub-section, future work should consider if precipitation should be subjected to different 

evaluation criteria (from those used in assessing temperature) such as the number of rain 

days or precipitation intensity return intervals. 

Although more than half of the models have a wet bias in the 50
th

 through 99
th

 

percentiles and is a function of a wet bias in the same percentiles for each RCM driven by 

NCEP boundary conditions (Figure H.6). These precipitation amounts do not adequately 

replenish water supplies and sub-surface moisture due to high runoff rates. Even more 

troubling is the dry bias observed from most models during the summer across all 

percentiles. The dry bias within the GCMs noted for the east sub-region is slightly greater 

in the west sub-region (Figure F.6) which is maintained, and in some cases enhanced, 

within the RCMs. The dry bias must be attributed to the GCMs because each RCM run 

with NCEP LBCs illustrates a wet bias during the summer, with the exception of the 

WRFG from the 5
th

 through 50
th

 percentiles and the CRCM from the 90
th

 to 99
th

 

percentiles. Although observations show extreme precipitation (both high and low) is 

increasing across the Northern Hemisphere (Min et al., 2011) and U.S. (Samenow, 2012), 

the models exhibit a propencity to high-end exaggeration. 
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Figure 3.13. Hovmöller diagram of mean precipitation Perkins skill score (a) and 

Willmott’s index of agreement (b) for the east sub-region. Abbreviations for NARCCAP 

ensemble members and GCMs: “MM5I-CC”=MM5I-CCSM, “RCM3-GF”=RCM3-

GFDL, “ECP2-GF”=ECP2-GFDL, “WRFG-CC”=WRFG-CCSM, “WRFG-

CG3”=WRFG-CGCM3, “RCM3-CG3”=RCM3-CGCM3, “CRCM-CG3”=CRCM-

CGCM3, “CRCM-CC”=CRCM-CCSM”, “GFDL-TS”=GFDL-Timeslice, 

“CCSM”=CCSM GCM, “GFDL”=GFDL GCM, and “CGCM3”=CGCM3 GCM. 

 



 

90 

 

 
 

Figure 3.14. Hovmöller diagram of mean precipitation RMSE (a) and MAE (b) for the 

east sub-region. Abbreviations for NARCCAP ensemble members and GCMs: “MM5I-

CC”=MM5I-CCSM, “RCM3-GF”=RCM3-GFDL, “ECP2-GF”=ECP2-GFDL, “WRFG-

CC”=WRFG-CCSM, “WRFG-CG3”=WRFG-CGCM3, “RCM3-CG3”=RCM3-CGCM3, 

“CRCM-CG3”=CRCM-CGCM3, “CRCM-CC”=CRCM-CCSM”, “GFDL-TS”=GFDL-

Timeslice, “CCSM”=CCSM GCM, “GFDL”=GFDL GCM, and “CGCM3”=CGCM3 

GCM. 

 

 

 



 

91 

 

P
re

c
ip

it
a

ti
o
n

 B
ia

s
 (

%
) 

 
       Percentiles 

 
Figure 3.15. Percentile plots of mean precipitation bias for the east sub-region from nine 

NARCCAP ensemble members for December (a), January (b), February (c), March (d), 

April (e), May (f), June (g), July (h), August (i), September (j), October (k), and 

November (l). Labels for the NARCCAP ensemble members: “1”=MM5I-CCSM, 

“2”=RCM3-GFDL, “3”=ECP2-GFDL, “4”=WRFG-CCSM, “5”=WRFG-CGCM3, 

“6”=RCM3-CGCM3, “7”=CRCM-CGCM3, “8”=CRCM-CCSM, and “9”=GFDL-

Timeslice.  
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Figure 3.16. Hovmöller diagram of mean precipitation Perkins skill score (a) and 

Willmott’s index of agreement (b) for the west sub-region. Abbreviations for NARCCAP 

ensemble members and GCMs: “MM5I-CC”=MM5I-CCSM, “RCM3-GF”=RCM3-

GFDL, “ECP2-GF”=ECP2-GFDL, “WRFG-CC”=WRFG-CCSM, “WRFG-

CG3”=WRFG-CGCM3, “RCM3-CG3”=RCM3-CGCM3, “CRCM-CG3”=CRCM-

CGCM3, “CRCM-CC”=CRCM-CCSM”, “GFDL-TS”=GFDL-Timeslice, 

“CCSM”=CCSM GCM, “GFDL”=GFDL GCM, and “CGCM3”=CGCM3 GCM. 
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Figure 3.17. Hovmöller diagram of mean precipitation RMSE (a) and MAE (b) for the 

west sub-region. Abbreviations for NARCCAP ensemble members and GCMs: “MM5I-

CC”=MM5I-CCSM, “RCM3-GF”=RCM3-GFDL, “ECP2-GF”=ECP2-GFDL, “WRFG-

CC”=WRFG-CCSM, “WRFG-CG3”=WRFG-CGCM3, “RCM3-CG3”=RCM3-CGCM3, 

“CRCM-CG3”=CRCM-CGCM3, “CRCM-CC”=CRCM-CCSM”, “GFDL-TS”=GFDL-

Timeslice, “CCSM”=CCSM GCM, “GFDL”=GFDL GCM, and “CGCM3”=CGCM3 

GCM. 
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Figure 3.18. Percentile plots of mean precipitation bias for the west sub-region from nine 

NARCCAP ensemble members for December (a), January (b), February (c), March (d), 

April (e), May (f), June (g), July (h), August (i), September (j), October (k), and 

November (l). Labels for the NARCCAP ensemble members: “1”=MM5I-CCSM, 

“2”=RCM3-GFDL, “3”=ECP2-GFDL, “4”=WRFG-CCSM, “5”=WRFG-CGCM3, 

“6”=RCM3-CGCM3, “7”=CRCM-CGCM3, “8”=CRCM-CCSM, and “9”=GFDL-

Timeslice. 
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3.2 NARCCAP VERSUS NARR VARIABLES 

Six variables from the NARR were analyzed to determine how each model was 

handling other variables within their individual climate systems. Variables chosen give 

insight into micro-, meso-, and synoptic-scale processes that are vitally important to 

temperature and precipitation and the feedbacks within the climate system. Of note, not 

all models output or reported the variables presented below. The incorporation of latent 

and sensible heat flux, for example, was necessitated by two models not producing soil 

moisture content results, thus to gain perspective on other thermodynamic properties 

associated with surface and atmospheric moisture, heat fluxes were included. Caution 

should be exercised with regard to direct comparison of specific GCM-driven RCM 

values to NARR values because GCM-driven runs are not meant to compare with a 

specific moment in time like the NCEP-driven RCM runs. Rather, GCM-driven runs, 

when considered over a lengthy climatological period (20-30 years), are meant to 

represent intra- and inter-annual variability found over the same climate period. The 

findings below are general with respect to the 21-year climate period chosen (1979-

1999). 

 

3.2.1 SOIL MOISTURE CONTENT, LATENT HEAT FLUX, AND SENSIBLE HEAT 

FLUX 

Soil moisture content, latent heat flux, and sensible heat flux were chosen to 

represent the micro-scale meteorological/climatological phenomenon near the surface of 

the earth. As discussed previously, soil moisture has a large influence on temperature by 

impacting the surface energy budget and on precipitation by impacting localized warm-



 

96 

 

season convection. Figures 3.19 and 3.20 illustrate the monthly soil moisture content for 

seven of the nine NARCCAP ensemble members from 1979-1999. The RCM3-GFDL 

and RCM3-CGCM3 models exhibit erroneously high soil moisture compared to 

reanalysis. This may point to a systematic flaw within the RCM3 model in terms of its 

representation of surface and sub-surface processes; however, soil moisture content was 

not available for RCM3-NCEP runs and cannot be fully verified. Additionally, high soil 

moisture content is a likely cause to the degradation in skill and cold temperature bias 

observed in the RCM3-GFDL model. Conversely, the GFDL-timeslice exhibits a 

substantial dry soil moisture bias; however, no clear evidence exists to link the dry soil 

moisture bias in this model to its temperature or precipitation biases.  
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Figure 3.19. Box and whisker plots of RCM-GCM model results and observations of soil 

moisture for the period 1979-1999 for December (a), January (b), February (c), March 

(d), April (e), May (f), June (g), July (h), August (i), September (j), October (k), and 

November (l) for the east sub-region. 

 

a) b) c) 

d) e) f) 

g) h) i) 

j) k) l) 
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Figure 3.20. Box and whisker plots of RCM-GCM model results and observations of soil 

moisture for the period 1979-1999 for December (a), January (b), February (c), March 

(d), April (e), May (f), June (g), July (h), August (i), September (j), October (k), and 

November (l) for the west sub-region. 

 

 

The CRCM-CGCM3 model, like the GFDL-timeslice, exhibits a dry soil moisture 

bias throughout each month and is also observed in the CRCM-NCEP runs (Figures H.7 

and H.8). The greatest impact this appears to make is associated with summer maximum 

temperatures in which a warm bias of 2 to 6°C exists, especially beyond the 50
th

 

percentile. Additionally, the dry soil moisture bias may be a leading factor in the dry 

precipitation bias noted for the CRCM-CGCM3 in each season, with particularly dry bias 

a) b) c) 

d) e) f) 

g) h) i) 

j) k) l) 
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from late spring (April) through mid-fall (October) (Figures I.1 and I.2). The ECP2-

GFDL exhibits the closest match to both the quantity and periodicity of soil moisture 

found in the reanalysis data, indicating the ECP2-GFDL model’s bias is associated with 

another atmospheric process.  

 
 

Figure 3.21. Box and whisker plots of RCM-GCM model results and observations of 

latent heat flux for the period 1979-1999 for December (a), January (b), February (c), 

March (d), April (e), May (f), June (g), July (h), August (i), September (j), October (k), 

and November (l) for the east sub-region. 

 

a) b) c) 

d) e) f) 

g) h) i) 

j) k) l) 
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Figure 3.22. Box and whisker plots of RCM-GCM model results and observations of 

latent heat flux for the period 1979-1999 for December (a), January (b), February (c), 

March (d), April (e), May (f), June (g), July (h), August (i), September (j), October (k), 

and November (l) for the west sub-region. 

 

 

Monthly latent (Figures 3.21 and 3.22) and sensible (Figures 3.23 and 3.24) heat 

flux plots reveal potential issues related to balancing the surface energy budget, wherein 

the amount of energy put into a system (atmosphere) must balance with energy out of the 

system. Latent and sensible heat fluxes are two methods in which the majority of energy 

is released out of the atmosphere. To maintain energy balance, if the latent heat flux is 

too low more energy is put into the sensible heat flux which leads to increased 

a) b) c) 

d) e) f) 

g) h) i) 

j) k) l) 
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temperature and can be an indication of dry soil bias. Conversely, if latent heat flux is too 

high, more energy is put into the process of evaporation and can be an indication of 

erroneously wet soil, which in turn reduces the amount of energy put into increasing 

temperature, resulting in cold temperature bias.  

 
 

Figure 3.23. Box and whisker plots of RCM-GCM model results and observations of 

sensible heat flux for the period 1979-1999 for December (a), January (b), February (c), 

March (d), April (e), May (f), June (g), July (h), August (i), September (j), October (k), 

and November (l) for the east sub-region. 

 

a) b) c) 

d) e) f) 

g) h) i) 

j) k) l) 
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Figure 3.24. Box and whisker plots of RCM-GCM model results and observations of 

sensible heat flux for the period 1979-1999 for December (a), January (b), February (c), 

March (d), April (e), May (f), June (g), July (h), August (i), September (j), October (k), 

and November (l) for the west sub-region. 

 

 

Latent heat flux plots for both sub-regions reveal a situation in which all models 

tend to under-predict latent heat flux in all months in the east sub-region, while under-

predicting for most months in the west sub-region (Figures I.1 and I.2). Additionally, the 

RCM3-GFDL exhibits periods of higher latent heat flux in a few summers compared to 

reanalysis. Based on soil moisture plots above, the two RCM3 models should have higher 

than observed latent heat flux in most months as excessive soil moisture would need to be 

a) b) c) 

d) e) f) 

g) h) i) 

j) k) l) 
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evaporated back into the atmosphere to maintain energy balance. This very factor is a 

distinct possibility as precipitation minus potential evapotranspiration anomaly plots 

(Figures I.1 and I.2) indicate a moisture deficit, however, the P-PE rate does not appear to 

be high enough to allow for complete balance in the water and energy budgets. One 

troubling observation is the CRCM-CCSM’s inability to replicate inter-annual variability 

found in the reanalysis data and a readily available diagnosis as to the cause of such an 

odd behavior is not available, especially since the CRCM behaves relatively well when 

driven with the NCEP data (Figures H.9 and H.10).  

Sensible heat flux for both regions are below observations from late fall through 

early spring, while late spring through early fall values are well above observations 

(Figures 3.23 and 3.24). The same trend is found with each RCM run with NCEP LBCs 

(Figures H.11 and H.12). From an energy balance perspective, if the sensible and latent 

heat fluxes are low, more energy is going into other processes such as energy absorbed or 

reflected by the atmosphere. There is some merit to this thought. Maximum temperature 

is greatly influenced by sensible heat flux (as well as cloud cover). The percentile plots 

for maximum temperature show that all models have some form of cold bias from 

December through April and again in October and November, corresponding to sensible 

heat flux values below observations during the same period. Conversely, sensible heat 

flux values above observations, such as those during the summer, are more likely than not 

a contributing factor to the exceptional warm bias observed in the summer for the CRCM 

RCMs. 
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3.2.2 500-MB HEIGHT 

Mean 500-mb height plots allow for the determination of “troughiness” and 

“ridgeiness” in the mid-troposphere. Troughs and ridges are the primary synoptic-scale 

features which drive weather patterns. Troughs are associated with stormy weather and 

cooler temperatures while ridges lead to fair weather and warmer temperatures. If mean 

500-mb heights from a model are below observations, the model presents too much of a 

trough, which can result in the model over-predicting the passage frequency of mid-

latitude waves and/or cold air intrusion into a region. Conversely, if mean 500-mb 

heights from a model are above observations, the model presents too much of a ridge 

which typically leads to reduced frequency of mid-latitude cyclones and potential 

increase in heat waves. Figures 3.25 and 3.26 illustrate mean monthly 500-mb heights for 

the east and west sub-regions for eight of the nine NARCCAP ensemble members while 

Figures I.1 and I.2 illustrate monthly 500-mb anomolies. Additionally, Figures I.3 

through I.14 illustrate 500-mb anomalies (by month) spatially across the Southeast U.S. 

The two RCM3 models greatly under-predict 500-mb height for all months in both 

regions. The RCM3-NCEP run (Figures H.13 and H.14) illustrates the RCM3 under-

predicts monthly mean 500-mb height for both sub-regions, however, the low height bias 

is not nearly as pronounced as RCM3 runs with GCM LBCs. Coupling these findings 

with that of soil moisture, it can be concluded the RCM3 model has a systematic issue of 

being too cold and wet which impact the rest of the modeled climate system. The item 

which separates the two RCM3 runs is their differing LBCs; of which the GFDL has a 

known cold bias, coupled with the cold and wet bias of the RCM3, leads to the observed 

reduction in all skill metrics, more notably with respect to maximum temperature.  
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Figure 3.25. Box and whisker plots of RCM-GCM model results and observations of 

500-mb heights for the period 1979-1999 for December (a), January (b), February (c), 

March (d), April (e), May (f), June (g), July (h), August (i), September (j), October (k), 

and November (l) for the east sub-region. 

 

a) b) c) 

d) e) f) 

g) h) i) 

j) k) l) 
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Figure 3.26. Box and whisker plots of RCM-GCM model results and observations of 

500-mb heights for the period 1979-1999 for December (a), January (b), February (c), 

March (d), April (e), May (f), June (g), July (h), August (i), September (j), October (k), 

and November (l) for the west sub-region. 

 

 

 For the RCMs other than the RCM3 models, there is tendency in both sub-regions 

for enhanced troughs during the winter months (centered mostly to the west of the 

Mississippi River Basin) and enhanced ridges in the summer months (centered mostly 

over the Ohio River Valley), a pattern that is not evident in the NCEP-driven runs, 

indicating this pattern is most likely due to GCM LBCs. Enhanced troughs in the winter 

will result in the increased frequency of mid-latitude cyclones, which during this 

a) b) c) 

d) e) f) 

g) h) i) 

j) k) l) 
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particular season can result in increased snowfall for the mid and upper latitudes, 

increased rain in the lower latitudes, and increased cold air out breaks for all locations. 

The percentile plots for both sub-regions in winter reveal this exact scenario. Most 

models have a wet bias in the winter, with particular emphasis in the upper percentiles 

while maximum temperatures exhibit cold winter bias for virtually all models. 

Conversely, enhanced ridges during the summer typically result in the decreased 

frequency of mid-latitude cyclones, leading to decreased synoptic-scale driven 

precipitation (leaving small-scale driven convective precipitation as the main form of 

precipitation) and warmer surface temperatures. This exact trend is shown in the summer 

precipitation and maximum temperature percentile plots for the majority of the models 

for both sub-regions. 

 One final and interesting observation about mean 500-mb heights is made 

between the two RCMs driven by the GFDL. The influence of the GFDL can be seen in 

the periodic spikes in monthly 500-mb heights (e.g., January/February 1982). Similar 

observations can be made for RCMs utilizing the CGCM3 for LBCs (e.g., 

January/February 1991). The relationship between the CCSM model and its two RCMs is 

much less obvious. 

 

3.2.3 SEA-LEVEL PRESSURE 

Sea-level pressure is an important aspect of diagnosing systematic errors found 

within climate models. Sea-level pressure is closely tied to 500-mb height in that lower 

500-mb heights are highly correlated with lower sea-level pressure; while higher 500-mb 

heights couple with higher sea-level pressure. To this end, high sea-level pressure 
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corresponds to warm/dry conditions while low sea-level pressure corresponds to cool/wet 

conditions. Figures 3.27 and 3.28 illustrate the monthly mean sea-level pressure for both 

sub-regions while Figures I.1 and I.2 illustrate the monthly sea-level pressure anomolies. 

Additionally, Figures I.15 through I.26 illustrate sea-level pressure anomalies spatially 

across the Southeast U.S. With a few notable exceptions, most models over-estimate sea-

level pressure, regardless of month, with higher sea-level pressure anomalies over the 

Atlantic Ocean and smaller anomolies inland. Additionally, unlike the 500-mb and soil 

moisture plots, the models fail to separate themselves pattern or bias-wise, which may 

indicate sea-level pressure is not an adequate metric to determine deeper systematic 

biases within the RCMs. Although not a perfect representation, it appears most models 

attempt to replicate the periodicity found in the reanalysis data; however, the contribution 

of sea-level pressure to temperature and precipitation bias is not obvious. 
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Figure 3.27. Box and whisker plots of RCM-GCM model results and observations of sea-

level pressure for the period 1979-1999 for December (a), January (b), February (c), 

March (d), April (e), May (f), June (g), July (h), August (i), September (j), October (k), 

and November (l) for the east sub-region. 

 

a) b) c) 

d) e) f) 

g) h) i) 

j) k) l) 
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Figure 3.28. Box and whisker plots of RCM-GCM model results and observations of sea-

level pressure for the period 1979-1999 for December (a), January (b), February (c), 

March (d), April (e), May (f), June (g), July (h), August (i), September (j), October (k), 

and November (l) for the west sub-region. 

 

 

3.2.4 TOTAL CLOUD COVER 

Total cloud cover assists in determining systematic issues inherent within 

individual models. High cloud cover modifies the energy balance equation by reducing 

the amount of solar radiation infused into the atmosphere and increasing the amount of 

radiation reflected back to space. Enhanced cloud cover is typically associated with 

cooler temperatures due to reflected radiation to space and less energy used in the 

a) b) c) 

d) e) f) 

g) h) i) 

j) k) l) 
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sensible heat flux portion of the energy balance equation. Cloudy conditions have less of 

an impact on precipitation than, for instance, 500-mb height; however, increased 

cloudiness in the summer leads to a less buoyant atmosphere which reduces the potential 

for convective precipitation formation. Less impact on precipitation relative to total cloud 

cover is felt in the winter because winter precipitation is driven by the synoptic-scale 

weather pattern (i.e., 500-mb height). 

 Figures 3.29, 3.30, I.1, and I.2 illustrate the monthly total cloud cover for the east 

and west sub-regions and a few patterns emerge. First, the models driven by the CRCM 

RCM exhibit low total cloud cover in the summer months which aids in explaining this 

RCM’s warm maximum temperature and dry precipitation biases, however, this pattern is 

not evident in the CRCM-NCEP results (Figures H.15 and H.16) indicating GCM LBCs 

push the CRCM into the noted bias. Additionally, the CRCM RCM’s negative cloud 

cover anomalies (not enough clouds) in summer coincide with anomalously high sensible 

heat flux, anomalously low latent heat flux, low soil moisture (from the CRCM-CGCM3 

only), high maximum temperatures, low precipitation, and low precipitation minus 

potential evapotranspiration (Figures I.1 and I.2). The MM5I-CCSM model exhibits 

higher-than-observation total cloud cover values in both sub-regions, across all months; 

however, due to the MM5I-CCSM’s high skill and low bias for temperature and 

precipitation, it is difficult to make conjectures about cause and effect as it relates to the 

temperature/precipitation/total cloud cover relationship in this case. 
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Figure 3.29. Box and whisker plots of RCM-GCM model results and observations of total 

cloud cover for the period 1979-1999 for December (a), January (b), February (c), March 

(d), April (e), May (f), June (g), July (h), August (i), September (j), October (k), and 

November (l) for the east sub-region. 

 

a) b) c) 

d) e) f) 

g) h) i) 

j) k) l) 
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Figure 3.30. Box and whisker plots of RCM-GCM model results and observations of total 

cloud cover for the period 1979-1999 for December (a), January (b), February (c), March 

(d), April (e), May (f), June (g), July (h), August (i), September (j), October (k), and 

November (l) for the west sub-region. 

 

 

 Overall, the variables chosen to further investigate individual model short-

comings from the NARCCAP ensemble do provide insight into the question of “why” the 

models perform the way they do. Although no one variable directly causes change in 

another, the sum of all climate variables feedback into the climate system, leading to the 

skill values and biases observed in the previous sub-section. The warm and dry bias of 

the CRCM model coincides with low soil moisture, lack of clouds, high sensible heat 

a) b) c) 

d) e) f) 

g) h) i) 

j) k) l) 
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flux, and high 500-mb heights creating a positive feedback wherein soil moisture is 

further decreased, sensible heat flux increased, temperature is raised, precipitation is 

potentially suppressed, and water deficits ensue. By contrast, the cool and wet bias of 

RCM3 simulations coincide with a negative feedback involving high soil moisture, 

cloudy skies, high latent heat flux, and low 500-mb heights. In the case of the RCM3 

model, most of the energy balance issues are associated with the RCM3 itself and not the 

boundary conditions passed to the model. RCM3 results driven with NCEP LBCs 

illustrate the same low 500-mb height bias and high cloud cover bias noted with the 

GCM-driven runs. The only solutions to rectifying the energy balance issues within these 

models is to change either the physics package or land-atmosphere module to one in 

which the RCM performed well (such as the MM5I). 

 

3.3 NARCCAP VALUE ADDED 

The concept of value added in the context of climate model downscaling revolves 

around the argument that the effort of downscaling should provide additional knowledge 

that the GCM cannot or does not provide. Although sophisticated statistical measures of 

“value added” exist in the peer-reviewed literature, the overall topic is not well explored 

and studies determining value added are rare (Feser et al., 2011). The next three sub-

sections present results that measure the value added by regional-model for minimum and 

maximum temperature, and mean precipitation. Downscaling is deemed to add value 

when a regional model has better skill scores than the GCM providing its boundary 

conditions; it is deemed not to add value if skill scores for the GCM output are better than 

regional models they drive. 



 

115 

 

3.3.1 MINIMUM TEMPERATURE 

Hovmöller plots for the east (Figures 3.31 and 3.32) and west (Figures 3.33 and 

3.34) sub-regions illustrate value added for minimum temperature. The notion of value 

added is not clear cut in that a model adding value in one month is not necessarily an 

indication it will add value in others and is a function of the RCM, GCM, and metric used 

for the comparison. For instance, all three RCMs utilizing CCSM LBCs typically add 

value in each month for all four metrics, mainly because the CCSM exhibits marginal 

skill. Conversely, the three RCMs running CGCM3 LBCs add little, if any, value from 

the winter through early spring, but typically add significant value the rest of the year. 

Interestingly, the notion of value added appears to have as much to do with the regional 

climate model as it does the driving CGM. For example, the RCM3 model fails to add 

value to the GFDL GCM from December through March, with relatively similar findings 

when run with CGCM3 boundary conditions. Another example can be found with the 

WRFG RCMs for July through September, in which both RCMs fail to add value. 
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Figure 3.31. Value added for minimum temperature for Perkins skill score (a) and 

Willmott’s index of agreement (b) for the east sub-region. 
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Figure 3.32. Value added for minimum temperature for MAE (a) and RMSE (b) for the 

east sub-region. 
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Figure 3.33. Value added for minimum temperature for Perkins skill score (a) and 

Willmott’s index of agreement (b) for the west sub-region. 
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Figure 3.34. Value added for minimum temperature for MAE (a) and RMSE (b) for the 

west sub-region. 
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With regards to the GFDL GCM, minimal value is added through the 

downscaling process, regardless of season. The RCM3- and ECP2-GFDL models 

provided some added benefit from mid summer through late fall, while the GFDL-

timeslice adds a small amount of value in winter and the transition seasons. This gives the 

indication that bounding a regional climate model with observed sea-surface conditions is 

beneficial for minimum temperature when synoptic-scale forces (e.g., mid-latitude 

cyclones, and troughs and ridges) drive local climate. Conversely, months when localized 

forcings provide a larger impact to the regional climate, regional climate models (i.e., 

RCM3- and ECP2-GFDL) are more beneficial. It would be interesting to observe value 

added for regional climate models if observed sea-surface conditions were incorporated 

in a timeslice-like manner. 

Overall, there are several instances in which downscaling minimum temperature 

does provide added value. The MM5I-CCSM adds value in the most months (10 out of 

12) for both sub-regions. Conversely, the ECP2-GFDL model provides the least amount 

of value added in the east sub-region with only one month superior to the driving GCM, 

while both the ECP2-GFDL and GFDL-timeslice add a small amount of value for 5 out 

of 12 months in the west sub-region. In terms of the magnitude of value added, the 

CRCM-CCSM and RCM3-CGCM3 models provide the greatest amount of value added 

for their respective GCMs in the east sub-region, while the RCM3-GFDL and CRCM-

CGCM3 provide the greatest amount of value added in the west sub-region. 
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3.3.2 MAXIMUM TEMPERATURE 

Maximum temperature results for value added differ greatly from minimum 

temperature with respect to the magnitude of the value added. With respect to minimum 

temperature, Perkins skill score differential between RCM and GCM typically fell within 

the ±0.1 range, RMSE and MAE within ±2°C, and Willmott values within ±0.5 for both 

sub-regions. With respect to maximum temperature, Figures 3.35 through 3.38 illustrate 

Perkins values typically falling in the ±0.2 range, RMSE and MAE within ±4°C, and 

Willmott values within ±0.75. The lone explanation for this behavior is the persistent 

cold bias expressed by several RCMs (specifically those run with the GFDL LBCs) 

across all months. Although each of the GCMs exhibit some magnitude of cold bias 

throughout each month, the magnitude of the bias in the RCM3 RCMs is greatest in 

several instances. 
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Figure 3.35. Value added for maximum temperature for Perkins skill score (a) and 

Willmott’s index of agreement (b) for the east sub-region. 
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Figure 3.36. Value added for maximum temperature for MAE (a) and RMSE (b) for the 

east sub-region. 
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Figure 3.37. Value added for maximum temperature for Perkins skill score (a) and 

Willmott’s index of agreement (b) for the west sub-region. 
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Figure 3.38. Value added for maximum temperature for MAE (a) and RMSE (b) for the 

west sub-region. 
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 The RCM3 and ECP2 models fail to add value in downscaling for any month, a 

slight contrast with results from minimum temperature in which a small order of value is 

added for a few months. Further, these models substantially degrade any skill the GFDL 

GCM may have provided. The GFDL-timeslice, on the other hand, adds value for most 

months out of the year, indicating including observed sea-surface conditions plays a 

factor in bounding maximum temperatures (more so than with minimum temperatures), 

overcoming any bias the regional climate models could not overcome. This observation 

provides merit to performing timeslice experiments where maximum temperature 

predictions are concerned by bringing the model back toward realism rather than blindly 

following GCM conditions. Interestingly, plots of value added for the GFDL-driven 

models in the west sub-region look similar to the east sub-region, save for the summer 

months, in which the RCMs add a minimal amount of value over the GFDL. Conversely, 

the GFDL-timeslice fails to add value during the same season. This dichodomy may 

reflect that the direct influence of sea-surface conditions are more important in the east 

sub-region and illustrate that they are less important to maximum temperature in the west 

sub-region. Although the entire Southeast U.S. is under the influence of the maritime 

tropical air mass in the summer, the inclusion of Tenessee and its “land-locked” nature 

may allow influence of the continential tropical air mass found in the Upper and Mid-

Mississippi River Valley and Ohio River Valley to lessen the impact of sea-surface 

conditions for the west sub-region.     

Overall, the MM5I-CCSM and GFDL-timeslice provide the most value added (at 

least 10 months with positive contribution) when compared to all other ensemble 

members. To determine if the MM5I proves superior with other LBCs, future work 
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should investigate the MM5I’s worth with other LBCs and perform similar analysis to 

that presented in this dissertation. The CRCM-CCSM provides some value added in 

winter and spring while the WRFG-CCSM provides minimal value added in summer. 

The three RCMs driven by the CGCM3 GCM provide value added contained within the 

summer, a result of the RCMs mitigating a large warm bias found within the CGCM3 

(compare Figures 3.9 and 3.12 to Figures F.4 and F.5). 

 

3.3.3 MEAN PRECIPITATION 

Figures 3.39 through 3.42 illustrate the value added with respect to Perkins skill 

score, Willmott’s index of agreement, RMSE and MAE for the both sub-regions. Value 

added for precipitation is perhaps the most important aspect in the downscaling process. 

GCMs lack the optimal horizontal resolution to resolve micro- and meso-scale processes 

related to warm season convective precipitation and are unable to resolve complex terrain 

influences such as mountains and coastlines. RCMs potentially could overcome these 

short-comings. With respect to Perkins skill score and Willmott’s index of agreement, 

most RCMs add some value from March through September, coinciding with the 

convective season, indicating intra- and inter-annual variability replication is improved 

through downscaling. RMSE and MAE values show improvement in several instances 

over their driving GCMs, indicating errors and bias are also reducted in the downscaling 

process.  
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Figure 3.39. Value added for mean precipitation for Perkins skill score (a) and Willmott’s 

index of agreement (b) for the east sub-region. 
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Figure 3.40. Value added for mean precipitation for MAE (a) and RMSE (b) for the east 

sub-region. 
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Figure 3.41. Value added for mean precipitation for Perkins skill score (a) and Willmott’s 

index of agreement (b) for the west sub-region. 
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Figure 3.42. Value added for mean precipitation for MAE (a) and RMSE (b) for the west 

sub-region. 
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In general, the CGCM3-driven runs add little value in the winter months while the 

CCSM-driven runs each add value from winter through mid spring. Conversely, the 

CCSM-driven runs add the least value during the summer months (with the exception of 

the MM5I model which does not add value in July only). The GFDL-driven RCMs, 

overall, tend to exhibit the least amount of improvement in Perkins skill scores and only 

illustrate marginal improvement with respect to the index of agreement, RMSE, and 

MAE. The WRFG-CGCM3 and MM5I-CCSM models exhibit the most value added 

(regardless or metric) for their repective LBCs with significant improvement (relative to 

the maginitude of value added) noted in the convective season. 

 A few instanstances exist in which skill metrics (Perkins or Willmott) favor the 

GCM, however, RMSE and MAE favor the RCM. One instance involves the WRFG-

CCSM model, particularly from mid spring through late fall. Another more notable 

instance occurs with the GFDL-timeslice in which value is rarely added with respect to 

the Perkins and Willmott values yet significant improvement is found for RMSE and 

MAE values. This indicates that although the intra- and inter-annual variability pattern is 

not improved with the timeslice experiement, the process does reduce error and bias 

found within the GCM. Conversely, the CRCM-CGCM3 illustrates an instance in which 

Perkins and Willmott values are increased in the downscaling process but at the cost of 

slightly increasing error and bias (particularly in the late spring and summer months). 

In the end, the notion of “value added” is relative to the metric being used. A 

blanket statement about value added for precipitation (and temperature for that matter) 

cannot be made, as value added can only be evaluated on a month-by-month and model-

by-model basis. Future work on this subject needs to evaluate value added with each 
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metric on a grid point by grid point basis rather than at the sub-regional scale to pinpoint 

locations of added value, particularly in locations poorly resolved by GCMs. 

 

3.4 EFFECTIVE NUMBER OF ENSEMBLE MEMBERS 

The effective number of models needed from an ensemble should be seriously 

considered by users of climate model output because: 1) maximizing the number of 

models used from an ensemble for an assessment has the potential to bias the assessed 

change in a variable (temperature, precipitation, etc.) toward an artificial mean because 

independence is assumed but not necessarily met; and 2) most users of climate model 

data do not want to gather information from nine ensemble members when they can glean 

the same amount of information from three or four ensemble members with high fidelity. 

The dendrograms and scatterplots in this section illustrate the similarities between RCMs, 

GCMs, and observations from a historical reference period by clustering models 

according to the strength of their relationship. Models which exhibit strong similarities 

are clustered low on the dendrogram while models with less similarity are clustered 

higher on the dendrogram. By incorporating observations and the driving GCMs into the 

cluster analysis, the goal is to determine if RCMs cluster with their driving GCM and 

determine which, if any, models cluster with observations.  

 Dendrograms generated for minimum and maximum temperature and mean 

precipitation based on hierarchical clustering for the east and west sub-regions (Figures 

3.43, 3.45, and 3.47) show strong clustering between RCM and the GCM used for LBCs. 

This indicates RCMs run with the same LBCs are not independent of each other. The 

clusters generated by the hierarchical analysis show similar patterns revealed in the 
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percentile plots (bias plots), the four skill metric Hovmoller plots, and value added 

Hovmoller plots in that RCMs run with similar LBCs tend to exhibit relatively similar 

bias, skill scores, and add (or detract) similarly with regard to value added. Interestingly, 

none of the RCMs (regardless of LBCs) tended to cluster with each other (e.g., RCM3-

GFDL does not cluster with RCM3-CGCM3), an indication that in general, RCMs are 

unable to distance themselves from their underlying boundary conditions. The sentiment 

of RCMs clustering based on similar LBCs is verified through the non-metric 

multidimensional scaling technique and illustrated in Figures 3.44 (minimum 

temperature), 3.46 (maximum temperature), and 3.48. The proximity of each point 

represents the strength of the relationship between observations, RCMs, and GCMs. 

Those which are closer together have higher similarity while those further from each 

other illustrate higher dissimilarity. 
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Figure 3.43. Dendrograms generated from hierarchical cluster analysis for minimum 

temperature for the east (a) and west (b) sub-regions. 

 

 

 

b) 

a) 
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Figure 3.44. Scatterplot of results from the non-metric multidimensional scaling 

minimum temperature for the east (a) and west (b) sub-regions. Numbers coorespond to 

observations and models as follows: “1”=observations, “2”=MM5I-CCSM, “3”=WRFG-

CCSM, “4”=CRCM-CCSM, “5”=RCM3-GFDL, “6”=ECP2-GFDL, “7”=GFDL-

Timeslice, “8”=WRFG-CGCM3, “9”=RCM3-CGCM3, “10”=CRCM-CGCM3, 

“11”=CCSM GCM, “12”=GFDL GCM, and “13”=CGCM3 GCM. 

a) 

b) 
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Figure 3.45. Dendrograms generated from hierarchical cluster analysis for maximum 

temperature for the east (a) and west (b) sub-regions. 

 

 

 

 

b) 

a) 
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Figure 3.46. Scatterplot of results from the non-metric multidimensional scaling 

maximum temperature for the east (a) and west (b) sub-regions. Numbers coorespond to 

observations and models as follows: “1”=observations, “2”=MM5I-CCSM, “3”=WRFG-

CCSM, “4”=CRCM-CCSM, “5”=RCM3-GFDL, “6”=ECP2-GFDL, “7”=GFDL-

Timeslice, “8”=WRFG-CGCM3, “9”=RCM3-CGCM3, “10”=CRCM-CGCM3, 

“11”=CCSM GCM, “12”=GFDL GCM, and “13”=CGCM3 GCM. 

a) 

b) 
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Figure 3.47. Dendrograms generated from hierarchical cluster analysis for mean 

precipitation for the east (a) and west (b) sub-regions. 

b) 
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Figure 3.48. Scatterplot of results from the non-metric multidimensional scaling mean 

precipitation for the east (a) and west (b) sub-regions. Numbers coorespond to 

observations and models as follows: “1”=observations, “2”=MM5I-CCSM, “3”=WRFG-

CCSM, “4”=CRCM-CCSM, “5”=RCM3-GFDL, “6”=ECP2-GFDL, “7”=GFDL-

Timeslice, “8”=WRFG-CGCM3, “9”=RCM3-CGCM3, “10”=CRCM-CGCM3, 

“11”=CCSM GCM, “12”=GFDL GCM, and “13”=CGCM3 GCM. 

a) 

b) 
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Observations typically cluster with the GFDL-timeslice in both sub-regions for all 

variables (with the exception of maximum temperature in the west sub-region and mean 

precipitation for the east sub-region). This indicates the GFDL-timeslice best captures the 

intra- and inter-annual variability found in observations; however, inspection of the skill 

metrics does not reveal the GFDL-timeslice owning superior skill in reproducing 

observations relative to other RCMs in NARCCAP on a month-by-month comparison. 

GFDL-timeslice and observations clustering together appears to be a function of the 

timeslice experiment using observed sea surface and ice boundary conditions rather than 

utilizing boundary conditions from a GCM with fully coupled atmosphere and ocean 

components. The timeslice results illustrate the degree to which incorporating (or 

assimilating) observations into the model provide realistic “bounds”, keeping the model 

closely coupled to observed conditions.  

Mean precipitation dendrograms (Figure 3.45) illustrate the CRCM RCM clusters 

with its driving GCM (CRCM-CCSM with the CCSM GCM and the CRCM-CGCM3 

with the CGCM3 GCM), something not found in any of the other clusters produced for 

temperature. One explanation of this behavior may be extracted from the value added 

Hovmöller plots in Figures 3.33 through 3.36 in which the CRCM RCMs add little if any 

value to the downscaling process (with respect to the magnitude of the value added), 

giving an indication that, in this case, the RCMs perform similarly to the GCMs driving 

them. Although RCMs should matter most with respect to precipitation, this is one 

instance in which the RCM cannot disengage from the influence of the driving GCM. 

Conversely, neither the RCM3 nor WRFG RCMs find themselves in clusters in close 

proximity to one another.  
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Based on the hierarchical clustering and NMDS procedures and findings from 

Pennell and Reichler (2010) and Masson and Knutti (2011), the effective number of 

models recommended from NARCCAP to provide an adequate ensemble would be one 

RCM for each GCM (three) plus the GFDL-timeslice (as the GFDL-timeslice does not 

cluster with either the GFDL GCM or the RCMs run with GFDL LBCs). The choice of 

RCM should be based on performance metrics by either month, season, or over the entire 

year, depending on the assessment being conducted. The hierarchical clustering analysis 

provides additional quantitative analysis that RCMs run with similar LBCs tend to 

provide similar results to those found in the previous three sections. The added bonus is 

found with respect to the explicit grouping of models by semblance rather than making 

qualitative assumptions about RCM-GCM similarity. Lastly, incorporating observations 

allowed for the finding that the GFDL-timeslice, driven with observed sea-surface 

conditions, tended to follow the daily-, monthly-, and inter-annual variability found in 

observations, a conclusion not found in the bias or skill metrics. Skill for the GFDL-

timeslice is degraded by persistent bias; however, the cluster analysis reveals observed 

weather pattern replication in the timeslice experiment regardless of bias. 

All apsects of the work presented in Chapter 3 were used to provide stakeholders 

with recommendations of models to use for their specific applications. Table 3.2 provides 

a comprehensive view of example model output uses (e.g., further modeling studies, 

extreme precipitation applications, etc.), the variables typically used for those activities, 

the recommended ensemble, as well as the overall “best” model as found in this 

dissertation. The recommended ensemble was constructed based on one RCM per GCM, 

included the GFDL-Timeslice, and was ultimately formed based on superiority on a 
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monthly basis for each respective variable (a tally which is illustrated in the next 

chapter). Additionally, a grade according to efficacy of the model is shown from low 

efficacy to high efficacy. It should be noted that although the GFDL-based models tended 

showed several shortcomings, their inclusion in an ensemble is important because 

although they may not satisfactorally replicate observations their future projects may still 

prove valid and thus provide decision makers with a broader range of future uncertainties 

in which they can base their assessments (Stainforth et al., 2007).



 

2 
Letters in parenthesis represent the efficacy of the model with respect to all metrics (Perkin’s skill score, Willmott’s index of agreement, RMSE, and MAE) and 

variables (Tmin, Tmax, Pmean, sea-level pressure, 500-mb height, soil moisture, latent and sensible heat flux, and total cloud cover). “H” represents high efficacy 

(most aspects replicated well compared to observations), “M” represents moderate efficacy (some aspects replicated well compared to observations), and “L” 

represents low efficacy (few aspects replicated well compared to observations). 

 

1
4
4

 

Table 3.2. Examples of uses for climate model output, variables utilized, the recommended ensemble based on results from this 

dissertation, and the recommended single model (if output from a single model is desired for any given application).
2
  

 

Use of Model Output Daily Variables Utilized 
Recommended Ensemble 

(Efficacy) 

Recommended Single Model 

(Efficacy) 

Hydrologic and Crop 

Modeling 
Tmin, Tmax, Pmean 

MM5I-CCSM        (H) 

RCM3-GFDL        (L) 

GFDL-Timeslice   (M) 

CRCM-CGCM3    (M) 

MM5I-CCSM  (H) 

Growing Degree Days 

and Potential 

Evapotranspirtation 

Modeling 

Tmin, Tmax 

MM5I-CCSM        (H) 

RCM3-GFDL        (L) 

GFDL-Timeslice   (M) 

CRCM-CGCM3    (M) 

MM5I-CCSM  (H) 

Extreme Precipitation 

and Precipitation Return 

Intervals 

Pmean 

MM5I-CCSM        (H) 

RCM3-GFDL        (L) 

GFDL-Timeslice   (M) 

CRCM-CGCM3   (M) 

MM5I-CCSM  (H) 

Minimum Temperature 

Applications 
Tmin 

MM5I-CCSM       (H) 

ECP2-GFDL        (L) 

GFDL-Timeslice  (M) 

WRFG-CGCM3  (M) 

MM5I-CCSM  (H) 

Maximum Temperature 

Applications 
Tmax 

MM5I-CCSM       (H) 

RCM3-GFDL       (L) 

GFDL-Timeslice  (M) 

RCM3-CGCM3   (M) 

MM5I-CCSM  (H) 
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CHAPTER 4 

 

NARCCAP-BASED FUTURE CLIMATE PROJECTIONS 

Chapter 4 includes projected future changes in minimum temperature, maximum 

temperature, and mean precipitation from a 30-year historical reference period (1970-

1999) to a 30-year future period (2040-2069) for the east and west sub-regions within the 

Southeast U.S.  

 

4.1 MINIMUM TEMPERATURE 

Projections of change in future minimum temperature with respect to a 30-year 

historical reference period (1970-1999) illustrate a strong consensus among all 

NARCCAP ensemble members in that all locations, regardless of month, will warm by at 

least 1°C. Figure 4.1 illustrates the spatial distribution of ensemble mean change and 

standard deviation in minimum temperature for each month. Plotting the spatial pattern of 

ensemble standard deviation illustrates agreement between ensemble members relative to 

each other. Additionally, the box and whisker plots illustrated in Figure 4.2 provide a 

similar assessment but is only representative of the entire sub-region rather than a grid 

point by grid point basis. Lastly, Figures G.1 through G.12 illustrate change in minimum 

temperature by month from each ensemble members. 

 In both sub-regions, months with the lowest projected change occurred from 

December through March while months exhibiting the highest minimum temperature 

increase included July through September (Tables 4.1 and 4.3), respectively. The month 
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with the least spread among the ensemble members (indicating the highest level of 

agreement between models) was October with mean warming values of approximately 

2°C and IQ values between 1.7°C and 2.1°C, respectively. From a statistical significance 

stand point, between 1 and 3 models indicate projected change (for that particular 

ensemble member) to be significant at any α-level in the east sub-region, while only 1 to 

2 models indicate statistical significance at any α-level in the west sub-region. Both sub-

regions exhibit little skewness with respect to ensemble change distributions (Figure 4.2), 

with the months of March, July, August, and November exhibiting a slightly right 

skewness and September illustrating a slight skew to the left. A right skewed distribution 

indicates half the data points from the ensemble are less than the mean while a left 

skewed distribution indicates half the points are greater than the mean. 
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Figure 4.1. Ensemble mean change (shaded) and standard deviation (contoured) for 

minimum temperature for December (a), January (b), February (c), March (d), April (e), 

May (f), June (g), July (h), August (i), September (j), October (k), and November (l). 
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Figure 4.2. Box and whisker plots of change in minimum temperature from all ensemble 

members in the east (a) and west (b) sub-regions. Blue squares represent unweighted 

ensemble mean change, red circless represent weighted ensemble mean with Perkins skill 

score, and green triangles represent weighted ensemble mean with RMSE. 

 

 

Weighting the ensemble mean for each sub-region provided little difference from 

unweighted ensemble mean values. However, Figures 4.3 and 4.4 reveal the impact 

weighting can have spatially. Weighting (regardless of the metric used) slightly raised the 

a) 

b) 
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ensemble mean in half the months while slightly reducing or leaving unchanged for the 

remaining six months in the east sub-region. The west sub-region, conversely, observes 

weighted means less than or equal to the unweighted mean in eight months, while only 

three months observe a uniform warming between the weighting schemes (and one month 

in which Perkins skill score resulted in an unchanged mean while the RMSE weight 

raised the mean).  

 

 

Figure 4.3. Weighted ensemble mean using Perkins skill scores for minimum temperature 

for December (a), January (b), February (c), March (d), April (e), May (f), June (g), July 

(h), August (i), September (j), October (k), and November (l).  
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Figure 4.4. Weighted ensemble mean using RMSE for minimum temperature for 

December (a), January (b), February (c), March (d), April (e), May (f), June (g), July (h), 

August (i), September (j), October (k), and November (l). 

 

 

 

 

 Tables 4.1 and 4.3 illustrates ensemble mean, median, and IQ values for one 

RCM from each GCM plus the GFDL-timeslice. RCMs were chosen based on superiority 

with respect to Perkins’ skill score, Willmott’s index of agreement, and RMSE by month 

(Tables 4.2 and 4.4). With respect to the nine member NARCCAP ensemble, the east 

sub-region exhibits increased warming for selected ensemble mean and median (relative 

to the greater NARCCAP ensemble) for 10 months, while the west sub-region exhibits 

increased warming for the selected ensemble mean in 11 months and ensemble median 
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for 9 months, respectively. Compared to the nine member ensemble, the selected 

ensemble mean and median rose anywhere from 0.1 to 0.5°C.



 

3
 Ensemble median, 25

th
 percentile, and 75

th
 percentile change are also presented. Weighted mean numbers in red represent cases in which weighting results in 

higher mean change, blue represent cases in which weighting results in lower mean change and black are values which resulted in zero change. Superscripts for 

the unweighted ensemble mean change indicate change considered statistically significant at the α=0.1 (#), α=0.05 (@), and α=0.01 (*) levels for each individual 

ensemble member. The number following the superscript indicates the number of models from the NARCCAP ensemble considering change statistically 

significant at each α-level. The four-member select ensemble is comprised of models illustrated in Table 4.2. Red indicates cases were the select ensemble is 

warmer than the 9-member ensemble, blue is colder, and black unchanged. 
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Table 4.1. Change in 30 year minimum temperature for the west sub-region based on unweighted ensemble mean, weighted mean 

utilizing Perkins skill scores (SS), and weighted mean utilizing RMSE for the entire nine-member NARCCAP ensemble. 
3 

 

 

 

NARCCAP 9-Member Ensemble – East 4-Member Select Ensemble – East 
Unweighted 

Ensemble 

Mean 

Change 

 

(°C) 

SS Weight 

Mean 

Change 

 

 

(°C) 

RMSE 

Weight Mean 

Change 

 

 

(°C) 

Ensemble 

Median 

Change 

 

 

(°C) 

25
th
 

Percentile 

 

 

 

(°C) 

75
th

 

Percentile 

 

 

 

(°C) 

Ensemble 

Mean 

Change 

 

 

(°C) 

Ensemble 

Median 

Change 

 

 

(°C) 

25
th

 

Percentile 

 

 

 

(°C) 

75
th

 

Percentile 

 

 

 

(°C) 

Dec 1.76
*3 

1.74 1.68 1.66 1.21 2.31 1.94 2.10 1.43 2.46 

Jan 1.56
*2 

1.55 1.54 1.57 1.15 1.84 1.75 1.73 1.56 1.92 

Feb 1.33
*2 

1.36 1.44 1.47 1.13 1.63 1.62 1.55 1.23 1.89 

Mar 1.55
*2 

1.56 1.58 1.51 1.34 1.87 1.55 1.52 1.39 1.67 

Apr 2.09
*2 

2.09 2.07 2.06 1.86 2.32 2.27 2.22 2.03 2.52 

May 2.10
*2 

2.09 2.05 2.07 1.83 2.32 1.94 2.01 1.66 2.20 

Jun 2.34
*2 

2.35 2.35 2.32 2.06 2.67 2.58 2.59 2.39 2.80 

Jul 2.62
*2 

2.66 2.68 2.62 2.20 2.99 3.01 2.97 2.82 3.18 

Aug 2.69
*1 

2.70 2.71 2.57 2.20 3.07 3.09 3.01 2.67 3.53 

Sep 2.55
*2 

2.55 2.58 2.59 2.26 2.91 2.62 2.84 2.08 3.17 

Oct 1.97
*2 

1.98 2.01 1.98 1.86 2.14 2.11 2.07 1.91 2.30 

Nov 2.27
*2 

2.27 2.27 2.13 1.88 2.66 2.21 2.09 1.78 2.53 
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Table 4.2. Models chosen, by month and GCM LBCs, for the four-member ensemble based on findings from the hierarchical cluster 

analysis and superiority in the four skill metrics for minimum temperature in the east sub-region. 

 

 MM5I-

CCSM 

WRFG-

CCSM 

CRCM-

CCSM 

RCM3-

GFDL 

ECP2-

GFDL 

GFDL-

Timeslice 

WRFG-

CGCM3 

RCM3-

CGCM3 

CRCM-

CGCM3 

Dec X    X X  X  

Jan  X   X X  X  

Feb  X  X  X   X 

Mar   X X  X X   

Apr   X  X X   X 

May  X  X  X X   

Jun  X  X  X   X 

Jul   X X  X   X 

Aug   X X  X  X  

Sep   X X  X  X  

Oct   X X  X  X  

Nov   X  X X  X  

 

Total 

 

1 4 7 8 4 12 2 6 4 

 

 

 

 

 

 

 

 

 

 

 



 

4
 Ensemble median, 25

th
 percentile, and 75

th
 percentile change are also presented. Weighted mean numbers in red represent cases in which weighting results in 

higher mean change, blue represent cases in which weighting results in lower mean change and black are values which resulted in zero change. Superscripts for 

the unweighted ensemble mean change indicate change considered statistically significant at the α=0.1 (#), α=0.05 (@), and α=0.01 (*) levels for each individual 

ensemble member. The number following the superscript indicates the number of models from the NARCCAP ensemble considering change statistically 

significant at each α-level. The four-member select ensemble is comprised of models illustrated in Table 4.2. Red indicates cases were the select ensemble is 

warmer than the 9-member ensemble, blue is colder, and black unchanged. 
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Table 4.3. Change in 30 year minimum temperature for the west sub-region based on unweighted ensemble mean, weighted mean 

utilizing Perkins skill scores (SS), and weighted mean utilizing RMSE for the entire nine-member NARCCAP ensemble. 
4 

 

 

NARCCAP 9-Member Ensemble – West  4-Member Select Ensemble – West  
Unweighted 

Ensemble 

Mean 

Change 

 

(°C) 

SS Weight 

Mean 

Change 

 

 

(°C) 

RMSE 

Weight 

Mean 

Change 

 

(°C) 

Ensemble 

Median 

Change 

 

 

(°C) 

25
th
 

Percentile 

 

 

 

(°C) 

75
th

 Percentile 

 

 

 

 

(°C) 

Ensemble 

Mean 

Change 

 

 

(°C) 

Ensemble 

Median 

Change 

 

 

(°C) 

25
th

 

Percentile 

 

 

 

(°C) 

75
th

 

Percentile 

 

 

 

(°C) 

Dec 1.49
*1 

1.48 1.48 1.49 1.17 1.79 1.75 1.73 1.32 2.15 

Jan 1.35
*1 

1.39 1.49 1.41 1.12 1.61 1.53 1.58 1.14 1.89 

Feb 1.54
*1 

1.56 1.61 1.55 1.32 1.86 1.70 1.58 1.27 1.91 

Mar 2.11
*1 

2.10 2.09 2.14 1.76 2.46 1.55 1.49 1.25 1.91 

Apr 2.23
*1 

2.22 2.17 2.19 1.90 2.51 2.35 2.38 2.13 2.67 

May 2.59
*1 

2.59 2.58 2.65 2.21 2.95 2.31 2.34 2.09 2.49 

Jun 2.89
*1 

2.95 2.92 2.89 2.33 3.30 2.86 2.83 2.60 3.11 

Jul 2.92
*1 

2.90 2.86 2.79 2.48 3.32 3.27 3.21 2.89 3.64 

Aug 2.63
*1 

2.62 2.63 2.66 2.30 3.04 2.97 2.79 2.54 3.29 

Sep 1.93
*1 

1.93 1.95 1.94 1.74 2.08 2.66 2.71 2.08 3.29 

Oct 2.21
*1 

2.20 2.21 2.19 1.55 2.74 1.92 1.93 1.76 2.08 

Nov 1.77
*2 

1.74 1.67 1.77 1.32 2.20 2.22 2.21 1.56 2.71 
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Table 4.4. Models chosen, by month and GCM LBCs, for the four-member ensemble based on findings from the hierarchical cluster 

analysis and superiority in the four skill metrics for minimum temperature in the west sub-region.  

 

 MM5I-

CCSM 

WRFG-

CCSM 

CRCM-

CCSM 

RCM3-

GFDL 

ECP2-

GFDL 

GFDL-

Timeslice 

WRFG-

CGCM3 

RCM3-

CGCM3 

CRCM-

CGCM3 

Dec X   X  X   X 

Jan X   X  X  X  

Feb  X  X  X   X 

Mar X   X  X X   

Apr X    X X   X 

May  X  X  X X   

Jun X   X  X   X 

Jul X   X  X   X 

Aug X   X  X  X  

Sep   X X  X  X  

Oct   X X  X    

Nov   X  X X  X  

 

Total 

 

7 2 3 10 2 12 2 5 5 
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 In terms of individual models, the GFDL-timeslice consistently exhibits greatest 

warming from month-to-month out of any of the models, typically 1°C warmer. The 

CRCM-CCSM also exhibits among the highest increases in minimum temperature with 6 

of 12 months among the highest increases. The ECP2-GFDL shows the smallest 

increases from month-to-month, consistently 0.5°C below a majority of the models. 

Additionally, the ECP2-GFDL is the only model to exhibit a decrease in minimum 

temperature (0.5°C for 90% of the Southeast U.S. in March). Lastly, the MM5I-CCSM 

consistently exhibits change that establishes its place the middle of the ensemble. 

Increased nocturnal temperatures would result in increased nocturnal evaporation. 

Assuming unchanged dew point temperatures and annual mean precipitation, increased 

nocturnal evaporation will strain the water supply through enhanced water loss at both 

the surface and sub-surface. This would reduce flow in rivers and streams available for 

power plants and irrigation, and decrease the amount of available drinking water from 

reservoirs and lakes for municipalities. From an energy balance perspective, decreased 

surface and sub-surface moisture allows more heat to be stored in the soil and released as 

sensible heat, leading to potentially warmer daytime temperatures and a positive climate 

feedback. Additionally, crops such as corn (Zea mays L.) whose growth and development 

is determined by temperature (rather than calendar days like soybeans (Glycine max)) 

would be at increased risk for reduced yields due to rapid accumulation of growing 

degree days.  
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4.2 MAXIMUM TEMPERATURE 

Maximum temperature change, like minimum temperature change, exhibits a 

warming trend of at least 1°C for all months, with seven months exhibiting weighted and 

unweighted change of at least 2°C (Figure 4.5, Figure 4.6, and Tables 4.5 and 4.7). In 

both sub-regions, February exhibits the smallest warming while July exhibits the greatest 

warming. October presents the greatest agreement between ensemble members with 

mean change of 1.7°C and an inter-quartile range of 0.46°C while the months of May 

through August exhibit the highest inter-quartile ranges of at least 1°C, escalating to 

1.5°C in July, respectively. Only the CRCM-CGCM3 indicates change is statistically 

significant at any α-level (α=0.01 level for both sub-regions). Spatially, the greatest 

disagreement between models is mostly contained to South Carolina and eastern Georgia 

from May through August. In the east sub-region, weighting the ensemble mean resulted 

in an increase in mean change from February through July and September, and a decrease 

in January, November, and December, while in the west sub-region weighting resulted in 

increased mean change from December through May, July, September, and October, with 

decreases in August and November. 
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Figure 4.5. Ensemble mean change (shaded) and standard deviation (contoured) for 

maximum temperature for December (a), January (b), February (c), March (d), April (e), 

May (f), June (g), July (h), August (i), September (j), October (k), and November (l). 
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Figure 4.6.  Box and whisker plots of change in maximum temperature from all ensemble 

members in the east (a) and west (b) sub-regions. Blue squares represent unweighted 

ensemble mean change, red circless represent weighted ensemble mean with Perkins skill 

score, and green triangles represent weighted ensemble mean with RMSE.

a) 

b) 



 

5
 Ensemble median, 25

th
 percentile, and 75

th
 percentile change are also presented. Weighted mean numbers in red represent cases in which weighting results in 

higher mean change, blue represent cases in which weighting results in lower mean change and black are values which resulted in zero change. Superscripts for 

the unweighted ensemble mean change indicate change considered statistically significant at the α=0.1 (#), α=0.05 (@), and α=0.01 (*) levels for each individual 

ensemble member. The number following the superscript indicates the number of models from the NARCCAP ensemble considering change statistically 

significant at each α-level. The four-member select ensemble is comprised of models illustrated in Table 4.6. Red indicates cases were the select ensemble is 

warmer than the 9-member ensemble, blue is colder, and black unchanged. 
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Table 4.5. Change in 30 year maximum temperature for the east sub-region based on unweighted ensemble mean, weighted mean 

utilizing Perkins skill scores (SS), and weighted mean utilizing RMSE for the entire nine-member NARCCAP ensemble. 
5 

 

 

NARCCAP 9-Member Ensemble – East 4-Member Select Ensemble – East 
Unweighted 

Ensemble 

Mean 

Change 

 

(°C) 

SS Weight 

Mean 

Change 

 

 

(°C) 

RMSE 

Weight 

Mean 

Change 

 

(°C) 

Ensemble 

Median 

Change 

 

 

(°C) 

25
th
 

Percentile 

 

 

 

(°C) 

75
th

 Percentile 

 

 

 

 

(°C) 

Ensemble 

Mean 

Change 

 

 

(°C) 

Ensemble 

Median 

Change 

 

 

(°C) 

25
th

 

Percentile 

 

 

 

(°C) 

75
th

 

Percentile 

 

 

 

(°C) 

Dec 1.84
*1 

1.80 1.80 1.83 1.41 2.22 2.04 2.08 1.68 2.39 

Jan 1.65
*1 

1.64 1.64 1.60 1.40 1.91 1.64 1.53 1.37 1.91 

Feb 1.32
*1 

1.38 1.42 1.45 1.19 1.72 1.50 1.34 1.16 1.56 

Mar 1.65
*1 

1.73 1.73 1.47 1.29 1.93 1.56 1.43 1.28 1.85 

Apr 2.04
*1 

2.12 2.10 1.94 1.65 2.33 2.29 2.18 1.81 2.67 

May 2.66
*1 

2.76 2.74 2.47 2.02 3.09 1.98 1.95 1.63 2.29 

Jun 2.75
*1 

2.82 2.80 2.80 2.07 3.51 2.49 2.68 1.93 2.96 

Jul 3.10
*1 

3.13 3.12 3.14 2.36 3.86 2.89 2.83 2.26 3.46 

Aug 2.74
*1 

2.74 2.71 2.80 2.09 3.32 2.65 2.67 1.96 3.23 

Sep 2.29
*1 

2.36 2.38 2.21 1.84 2.77 2.54 2.63 1.99 2.99 

Oct 1.74
*1 

1.74 1.74 1.71 1.53 1.89 1.69 1.64 1.51 1.83 

Nov 2.38
*1 

2.36 2.35 2.30 2.00 2.67 2.40 2.27 2.00 2.54 
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Table 4.6. Models chosen, by month and GCM LBCs, for the four-member ensemble based on findings from the hierarchical cluster 

analysis and superiority in the four skill metrics for maximum temperature in the east sub-region. 

 

 MM5I-

CCSM 

WRFG-

CCSM 

CRCM-

CCSM 

RCM3-

GFDL 

ECP2-

GFDL 

GFDL-

Timeslice 

WRFG-

CGCM3 

RCM3-

CGCM3 

CRCM-

CGCM3 

Dec X    X X X   

Jan X   X  X X   

Feb X   X  X X   

Mar X   X  X X   

Apr X    X X X   

May X    X X   X 

Jun X    X X   X 

Jul X   X  X X   

Aug  X  X  X X   

Sep X    X X   X 

Oct X    X X X   

Nov X    X X X   

 

Total 

 

11 1 0 5 7 12 9 0 3 

 

 

 

 

 

 

 

 

 

 

 

 



 

6
 Ensemble median, 25

th
 percentile, and 75

th
 percentile change are also presented. Weighted mean numbers in red represent cases in which weighting results in 

higher mean change, blue represent cases in which weighting results in lower mean change and black are values which resulted in zero change. Superscripts for 

the unweighted ensemble mean change indicate change considered statistically significant at the α=0.1 (#), α=0.05 (@), and α=0.01 (*) levels for each individual 

ensemble member. The number following the superscript indicates the number of models from the NARCCAP ensemble considering change statistically 

significant at each α-level. The four-member select ensemble is comprised of models illustrated in Table 4.8. Red indicates cases were the select ensemble is 

warmer than the 9-member ensemble, blue is colder, and black unchanged. 
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Table 4.7. Change in 30 year maximum temperature for the west sub-region based on unweighted ensemble mean, weighted mean 

utilizing Perkins skill scores (SS), and weighted mean utilizing RMSE for the entire nine-member NARCCAP ensemble. 
6 

 

 

NARCCAP 9-Member Ensemble – West 4-Member Select Ensemble – West 
Unweighted 

Ensemble 

Mean 

Change 

 

(°C) 

SS Weight 

Mean 

Change 

 

 

(°C) 

RMSE 

Weight 

Mean 

Change 

 

(°C) 

Ensemble 

Median 

Change 

 

 

(°C) 

25
th
 

Percentile 

 

 

 

(°C) 

75
th

 Percentile 

 

 

 

 

(°C) 

Ensemble 

Mean 

Change 

 

 

(°C) 

Ensemble 

Median 

Change 

 

 

(°C) 

25
th

 

Percentile 

 

 

 

(°C) 

75
th

 

Percentile 

 

 

 

(°C) 

Dec 1.78
*1 

1.75 1.73 1.77 1.40 2.16 1.67 1.77 1.50 1.91 

Jan 1.58
*1

 1.59 1.59 1.52 1.31 1.80 1.44 1.41 1.26 1.64 

Feb 1.32
*1 

1.38 1.43 1.40 1.17 1.64 1.59 1.33 1.22 1.71 

Mar 1.69
*1 

1.78 1.79 1.61 1.41 1.97 1.63 1.52 1.40 1.92 

Apr 2.08
*1 

2.14 2.14 1.95 1.77 2.19 2.13 2.04 1.91 2.25 

May 2.89
*1 

2.92 2.92 2.48 2.26 3.56 2.33 2.33 2.20 2.45 

Jun 3.25
*1 

3.26 3.24 3.23 2.64 3.97 2.85 2.90 2.40 3.28 

Jul 3.54
*1 

3.58 3.58 3.55 2.78 4.31 4.20 4.28 3.81 4.64 

Aug 2.91
*1 

2.85 2.84 3.09 2.31 3.47 2.82 2.62 2.14 3.50 

Sep 2.42
*1 

2.47 2.47 2.34 2.03 2.80 2.63 2.67 2.10 3.14 

Oct 1.85
*1 

1.86 1.86 1.79 1.56 2.16 1.88 1.81 1.64 2.11 

Nov 2.37
*1 

2.35 2.31 2.35 1.78 2.85 2.41 2.27 1.75 2.83 

 

 

 

 



 

 

 

1
6
3

 

Table 4.8. Models chosen, by month and GCM LBCs, for the four-member ensemble based on findings from the hierarchical cluster 

analysis and superiority in the four skill metrics for maximum temperature in the west sub-region. 

 

 MM5I-

CCSM 

WRFG-

CCSM 

CRCM-

CCSM 

RCM3-

GFDL 

ECP2-

GFDL 

GFDL-

Timeslice 

WRFG-

CGCM3 

RCM3-

CGCM3 

CRCM-

CGCM3 

Dec X   X  X X   

Jan X   X  X X   

Feb X   X  X X   

Mar X   X  X X   

Apr   X  X X X   

May X    X X X   

Jun X    X X   X 

Jul  X  X  X  X  

Aug  X   X X X   

Sep  X   X X   X 

Oct X    X X X   

Nov X    X X X   

 

Total 

 

8 3 1 5 7 12 9 1 2 
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 The increase in mean change is attributed to the decreased weight of the two 

RCMs utilizing GFDL LBCs, specifically the ECP2-GFDL which consistently showed 

the least amount of change regardless of month (Figures G.13 through G.24). 

Additionally, the ECP2-GFDL is the only ensemble member to project a decrease in 

maximum temperature in any month, illustrating a 1°C decrease in March (Figure G.15). 

The WRFG-CCSM and CRCM-CCSM are the warmest models from January through 

July, while the CRCM-CGCM3 is the warmest model in August through October. The 

CRCM RCMs and WRFG-CCSM were among the most skillful models during these 

months, lending credence to a potentially warmer solution. 

 Tables 4.5 and 4.7 illustrate the ensemble mean, median, and IQ values for the 

selected ensemble comprised of one RCM per GCM with the addition of the GFDL-

timeslice (with Tables 4.6 and 4.8 illustrating which model was used for each month). 

The east sub-region exhibits a warmer central tendency (compared to the larger 

ensemble) from the fall through mid-spring with cooler central tendency from late spring 

through summer. The west sub-region does not exhibit a consistent pattern of 

warmer/cooler than the larger ensemble. Interestingly, the July selected ensemble mean 

and median are 0.7°C warmer than the greater ensemble, while the greatest increase or 

decrease from the greater ensemble was not more than 0.4°C for any month in either sub-

region. 
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Figure 4.7. Weighted ensemble mean using Perkins skill scores for maximum 

temperature for December (a), January (b), February (c), March (d), April (e), May (f), 

June (g), July (h), August (i), September (j), October (k), and November (l). 

 

 

 

 

 The potential impacts from increased maximum temperature are similar to those 

outlined for minimum temperature with respect to crop growth and development and 

stream flow/water availability. Assuming all other atmospheric factors remain similar to 

the historical climate (including precipitation), increased maximum temperatures will 

result in an increased potential for stress and mortality in plants and livestock. 

Additionally, power demand will increase due to additional cooling requirements for 

homes and businesses.  
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Figure 4.8. Weighted ensemble mean using RMSE for maximum temperature for 

December (a), January (b), February (c), March (d), April (e), May (f), June (g), July (h), 

August (i), September (j), October (k), and November (l).
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4.3 MEAN PRECIPITATION 

Changes in mean precipitation for the Southeast U.S. could create greater impacts 

to the region than changes in temperature, as all forms of industry and society depend on 

water supply. Unlike temperature, changes in precipitation are highly dependent on 

location within the Southeast U.S. rather than strictly at the sub-region level. The highest 

spatial variability with respect to the Southeast U.S. occurs from April through 

September when localized convective activity provides more precipitation than 

large/synoptic-scale-driven precipitation. Conversely, December through March, 

October, and November illustrate the least amount of spatial variability due to synoptic-

scale driven precipitation, consisting of frequent cold frontal passage, which dominates 

over localized convection. 

 In the east sub-region, ensemble mean change is within ±10% of the historical 

reference period with nine months illustrating less than ±5% change (Figure 4.9 and 4.10; 

Tables 4.9 and 4.11). February exhibits the highest increase in ensemble mean (weighted 

and unweighted) change of 8.6% and IQ values of -0.83 and 18.38%, respectively. 

Conversely, May exhibits the highest decrease in ensemble unweighted and Perkins-

based skill weighted change of -4.1% (and -4.6% for RMSE-based weight) with IQ 

values of -15.62 and 4.6%, respectively. The smallest inter-quartile range is observed in 

February at 14.9% while the highest inter-quartile range is observed in August at 26.2%.  
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Figure 4.9. Ensemble mean change (shaded) and standard deviation (contoured) for mean 

precipitation for December (a), January (b), February (c), March (d), April (e), May (f), 

June (g), July (h), August (i), September (j), October (k), and November (l). 
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Figure 4.10. Box and whisker plots of change in mean precipitation from all ensemble 

members in the east (a) and west (b) sub-regions. Blue squares represent unweighted 

ensemble mean change, red circless represent weighted ensemble mean with Perkins skill 

score, and green triangles represent weighted ensemble mean with RMSE.

a) 

b) 
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 Ensemble median, 25

th
 percentile, and 75

th
 percentile change are also presented. Weighted mean numbers in red represent cases in which weighting results in 

higher mean change, blue represent cases in which weighting results in lower mean change and black are values which resulted in zero change. Superscripts for 

the unweighted ensemble mean change indicate change considered statistically significant at the α=0.1 (#), α=0.05 (@), and α=0.01 (*) levels for each individual 

ensemble member. The number following the superscript indicates the number of models from the NARCCAP ensemble considering change statistically 

significant at each α-level. The four-member select ensemble is comprised of models illustrated in Table 4.10. Brown indicates cases were the select ensemble is 

drier than the 9-member ensemble, green wetter, and black unchanged. 
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Table 4.9. Change in 30 year mean precipitation for the east sub-region based on unweighted ensemble mean, weighted mean utilizing 

Perkins skill scores (SS), and weighted mean utilizing RMSE for the entire nine-member NARCCAP ensemble. 
7 

 

 

NARCCAP 9-Member Ensemble – East 4-Member Select Ensemble – East 
Unweighted 

Ensemble 

Mean 

Change 

 

(%) 

SS Weight 

Mean 

Change 

 

 

(%) 

RMSE 

Weight 

Mean 

Change 

 

(%) 

Ensemble 

Median 

Change 

 

 

(%) 

25
th
 

Percentile 

 

 

 

(%) 

75
th

 Percentile 

 

 

 

 

(%) 

Ensemble 

Mean 

Change 

 

 

(%) 

Ensemble 

Median 

Change 

 

 

(%) 

25
th

 

Percentile 

 

 

 

(%) 

75
th

 

Percentile 

 

 

 

(%) 

Dec -0.11
*3 

-0.04 -0.05 0.14 -9.84 10.15 0.19 -0.48 -9.37 7.99 

Jan 8.58
*2 

8.55 8.58 7.47 -0.83 18.38 7.63 6.25 -3.10 19.12 

Feb 5.51
*2 

5.42 5.34 4.09 -2.76 12.11 0.94 -1.12 -6.31 7.90 

Mar -0.05
*2 

0.22 -0.22 1.30 -10.82 10.47 5.10 4.94 -0.74 10.82 

Apr 2.88
*1

 2.88 2.80 1.97 -7.19 10.48 4.69 2.87 -6.11 11.00 

May -4.08
*2 

-4.05 -4.63 -6.30 -15.62 4.60 -3.67 -7.20 -17.16 4.08 

Jun -0.43
*2 

-0.50 -0.50 -0.81 -12.80 10.72 -0.31 -1.90 -11.23 8.94 

Jul 1.96
#1, *1 

2.28 1.59 -1.29 -11.89 12.88 5.05 0.89 -9.45 14.55 

Aug 0.02
*2 

0.08 -0.54 -2.17 -15.69 10.48 2.47 -1.49 -12.82 12.92 

Sep 2.47
*2 

2.85 2.34 0.62 -9.86 13.13 11.93 8.90 -0.92 21.12 

Oct 6.45
*2 

6.42 6.33 5.19 -4.79 14.84 6.71 5.28 -5.97 18.12 

Nov 2.48
*3 

2.38 2.84 -0.24 -8.81 13.52 4.25 2.64 -6.00 13.99 
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Table 4.10. Models chosen, by month and GCM LBCs, for the four-member ensemble based on findings from the hierarchical cluster 

analysis and superiority in the four skill metrics for mean precipitation in the east sub-region. 

 

 MM5I-

CCSM 

WRFG-

CCSM 

CRCM-

CCSM 

RCM3-

GFDL 

ECP2-

GFDL 

GFDL-

Timeslice 

WRFG-

CGCM3 

RCM3-

CGCM3 

CRCM-

CGCM3 

Dec   X X  X  X  

Jan X   X  X   X 

Feb X   X  X   X 

Mar X   X  X   X 

Apr X   X  X   X 

May X   X  X   X 

Jun X    X X   X 

Jul X    X X  X  

Aug X    X X  X  

Sep X    X X   X 

Oct X    X X X   

Nov X   X  X  X  

 

Total 

 

11 0 1 7 5 12 1 4 7 

 

 

 

 

 

 

 

 

 

 

 

 



 

8
 Ensemble median, 25

th
 percentile, and 75

th
 percentile change are also presented. Weighted mean numbers in red represent cases in which weighting results in 

higher mean change, blue represent cases in which weighting results in lower mean change and black are values which resulted in zero change. Superscripts for 

the unweighted ensemble mean change indicate change considered statistically significant at the α=0.1 (#), α=0.05 (@), and α=0.01 (*) levels for each individual 

ensemble member. The number following the superscript indicates the number of models from the NARCCAP ensemble considering change statistically 

significant at each α-level. The four-member select ensemble is comprised of models illustrated in Table 4.12. Brown indicates cases were the select ensemble is 

drier than the 9-member ensemble, green wetter, and black unchanged. 
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Table 4.11. Change in 30 year mean precipitation for the west sub-region based on unweighted ensemble mean, weighted mean 

utilizing Perkins skill scores (SS), and weighted mean utilizing RMSE for the entire nine-member NARCCAP ensemble. 
8 

 

 

NARCCAP 9-Member Ensemble – West 4-Member Select Ensemble – West 
Unweighted 

Ensemble 

Mean Change 

 

 

(%) 

SS Weight 

Mean 

Change 

 

 

(%) 

RMSE 

Weight 

Mean 

Change 

 

(%) 

Ensemble 

Median 

Change 

 

 

(%) 

25
th
 

Percentile 

 

 

 

(%) 

75
th

 Percentile 

 

 

 

 

(%) 

Ensemble 

Mean 

Change 

 

 

(%) 

Ensemble 

Median 

Change 

 

 

(%) 

25
th

 

Percentile 

 

 

 

(%) 

75
th

 

Percentile 

 

 

 

(%) 

Dec 0.38
*1 

0.48 0.38 -0.36 -10.43 10.33 2.73 3.91 -8.90 14.17 

Jan 6.98
*2 

7.06 7.24 6.80 -2.90 18.25 6.95 5.60 -1.62 15.47 

Feb 8.35
*1 

8.34 8.31 7.77 1.50 14.52 6.15 6.23 0.71 11.78 

Mar -5.33
*1 

-5.12 -5.27 -3.82 -16.94 5.28 0.44 0.92 -6.08 8.84 

Apr 1.88
*1 

2.13 1.53 0.94 -9.67 10.56 10.88 8.18 0.40 17.75 

May -11.22
@1, *1 

-11.09 -11.72 -12.42 -23.04 -0.58 -9.40 -11.84 -19.15 -2.54 

Jun -9.95
#1, *1 

-10.05 -9.82 -10.78 -21.02 0.64 -11.08 -13.00 -21.14 -2.00 

Jul -7.42
#1, *1 

-7.43 -7.38 -6.82 -20.10 2.86 -7.44 -5.82 -19.03 3.20 

Aug 4.51
@1, *1 

4.35 3.05 -1.60 -15.19 18.56 9.60 3.67 -9.90 25.03 

Sep 6.65
*1 

6.42 5.24 4.13 -7.86 18.50 1.31 0.47 -9.12 13.59 

Oct -1.15
*1 

-1.38 -1.14 -2.58 -11.02 8.29 -4.27 -4.43 -12.86 4.94 

Nov 9.95
#1, @1, *1 

9.78 9.70 8.27 1.48 17.98 4.78 4.39 -0.45 9.83 
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Table 4.12. Models chosen, by month and GCM LBCs, for the four-member ensemble based on findings from the hierarchical cluster 

analysis and superiority in the four skill metrics for mean precipitation in the west sub-region.  

 

 MM5I-

CCSM 

WRFG-

CCSM 

CRCM-

CCSM 

RCM3-

GFDL 

ECP2-

GFDL 

GFDL-

Timeslice 

WRFG-

CGCM3 

RCM3-

CGCM3 

CRCM-

CGCM3 

Dec X   X  X   X 

Jan   X  X X   X 

Feb X   X  X   X 

Mar X   X  X  X  

Apr X   X  X   X 

May X    X X   X 

Jun X    X X   X 

Jul X    X X  X  

Aug X   X  X  X  

Sep X   X  X  X  

Oct X    X X  X  

Nov X   X  X  X  

 

Total 

 

11 0 1 7 5 12 0 6 6 
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 Spatially, the highest amount of variability in August is observed in the complex 

terrain regions covering northern Georgia, western North Carolina, and northwestern 

South Carolina with standard deviation values in the 20-30% range. The WRFG-CGCM3 

and RCM3-CGCM3 exhibit increased August precipitation in these regions of 30-50% 

while the WRFG-CCSM dries the region by 20-50% (Figure G.32). Based on the three 

skill metrics, the RCM3-CGCM3 is the most skillful of the three models with the WRFG-

CGCM3 the least skillful in August, indicating more weight is applied to the RCM3-

CGCM3 solution illustrated in Figures 4.11 and 4.12. 

Increases in mean precipitation change are noted for eight months of the year for 

unweighted ensemble change, seven months for Perkins skill score-based weights and 

ensemble median change, and six months for RMSE-based weighted mean change. 

Additionally, with the exception of December and March, all other months illustrate an 

ensemble median change less than any of the means (weighted and unweighted), 

indicating the ensemble distribution is right skewed. Spatially, eastern North Carolina 

illustrates the most consistent drying pattern from May through September while central 

and northern Georgia and all South Carolina illustrate slightly wetter conditions in 

January, February, April, July, and October. Of particular note, changes in precipitation 

over the Atlantic Ocean indicate drier conditions during most of the Atlantic hurricane 

season from June through August. Future work should explore the frequency of tropical 

activity in this region, first determining model skill in replicating historical tropical 

activity and then exploring changes in future tropical activity. 

 The west sub-region exhibits higher variability in projected mean change than the 

east sub-region with mean change (weighted and unweighted) falling within ±12% for all 
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months while only within ±5% for three months. November exhibits the wettest mean 

change between 9.7 and 10% while May exhibits the driest mean change between 11.1 

and 11.7%, respectively. The smallest inter-quartile range occurs in February (13%), 

indicating relatively high model consensus, while the highest inter-quartile range occurs 

in August (33.8%), indicating a relatively large amount of model disagreement with 

respect to the magnitude and direction of projected change. Locations projecting the 

largest decreases in mean precipitation occur in Mississippi and most of Tennessee in 

March, May through July, and October between 10 and 30% (5 to 15% in Alabama) 

while showing strong increases in precipitation in March, September, and November 

between 10 and 20% (0 to 15% in Alabama).  

Figures G.25 through G.36 exhibit individual model contributions to mean 

ensemble change by month. The WRFG-CGCM3, RCM3-CGCM3, ECP2-GFDL, and 

RCM3-GFDL illustrate consistently high increase in mean precipitation in the east sub-

region while the RCM3-CGCM3 is the only ensemble member to consistently show high 

increases in the west sub-region across all months. All three RCMs driven with CCSM 

LBCs exhibit consistently high drying conditions in both sub-regions, most pronounced 

from April through September. Lastly, the two RCMs run with GFDL LBCs illustrate 

consistent drying in the west sub-region, contained to late spring through early fall, a 

direct contrast to their projections for the east sub-region during the same time period. 

 Tables 4.9 and 4.11 illustrate the selected ensemble mean, median, and IQ values 

for the three best performing RCMs from each GCM plus the GFDL-timeslice (with 

Tables 4.12 and 4.14 illustrating the models used by month). The east sub-region exhibits 

a wetter mean change than the greater ensemble in all months except for January and 
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February, when mean change is slightly drier than the full ensemble. The most significant 

increase in mean ensemble change is found in September (approximately 7% wetter) 

while the most significant decrease was observed in February (approximately 4.5% 

drier). The select ensemble mean exhibits wetter conditions for all months with the 

exception of May and June, however, May and June exhibit only slight decreases in mean 

precipitation of 3.7 and 0.3%, respectively. Additionally, the increase in mean 

precipitation during the summer and fall would be mostly timely as these months are 

typically the driest for this sub-region. In the west sub-region, only half of the months 

observed an increase in mean precipitation, mostly contained to the winter and spring, 

while the summer and fall observed a decrease in mean precipitation. Relatively 

substantial mean decreases in precipitation occur from May through July, which is a 

crucial time period for the growth and development of crops in this sub-region. Drier 

conditions during the most important points in development of such crops as corn have 

the potential to substantially reduce yield (assuming precipitation is the most limiting 

factor for yield), which impacts livestock producers and consumers through increased 

prices (assuming demand for the crop remains steady).  
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Figure 4.11. Weighted ensemble mean using Perkins skill scores for mean precipitation 

for December (a), January (b), February (c), March (d), April (e), May (f), June (g), July 

(h), August (i), September (j), October (k), and November (l). 

 

 

 

 

For both sub-regions, wetter projections in mean precipitation generally occur in 

the winter and fall while drier projections occur in the spring and summer months. 

During the growing season (spring and summer), decreases in mean precipitation coupled 

with increased minimum and maximum temperature will increase the potential for 

additional water issues for agriculture by decreasing sub-soil moisture availability and 

decreasing water supplies used for irrigation. Due to the sandy soils typical of the east 

sub-region, decreased sub-soil moisture exacerbates the projected increase in temperature 
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and decrease in precipitation during the growing season. Although increased mean 

precipitation is projected for the fall and winter months which would allow water 

supplies the opportunity to recharge, physical properties of the soils (sandy and clay) in 

both sub-regions will be the limiting factor with respect to recharge of water supplies. 

Sandy and clay soils are among the most porous and their ability to “hold” moisture is 

much less than the soils of the Ohio and Mississippi River Valleys (Campbell and 

Norman, 1998), potentially prolonging water scarcity issues already observed in the 

Southeast U.S. 

 
 

Figure 4.12. Weighted ensemble mean using RMSE for mean precipitation for December 

(a), January (b), February (c), March (d), April (e), May (f), June (g), July (h), August (i), 

September (j), October (k), and November (l).
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CHAPTER 5 

 

SUMMARY, KEY FINDINGS, SCIENTIFIC MERIT, AND FUTURE WORK 

5.1 SUMMARY 

Two general research questions structure the dissertation: 

 How skillful are the NARCCAP ensemble members in simulating minimum and 

maximum temperature and mean precipitation in the reference period (1970-

1999) for the Southeast United States?  What are their biases?  Does downscaling 

provide “value added” at local scales? 

 What are future projections (2040-2069) of minimum and maximum temperature 

and mean precipitation change for the Southeast United States? 

 This dissertation used four statistically-based metrics to assess monthly 

temperature and precipitation output from nine NARCCAP ensemble members in the 

Southeast United States for the historical reference period. Most models demonstrated 

high skill for temperature during the historical period. The outlier models included two 

RCMs run with the Geophysical Fluids Dynamics Lab (GFDL) as their lateral boundary 

conditions; these models suffered from a cold maximum temperature bias, attributed to 

erroneously high soil moisture. Precipitation skill showed mixed skill – relatively high 

when measured using a probability density function overlap measure or the index of 

agreement, but relatively low when measured with root-mean square error or mean 

absolute error, because several models overestimate the frequency of extreme 
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precipitation events. Downscaling generally improves projections of minimum 

temperature and mean precipitation at local scales for RCMs run with the Community 

Climate Model (CCSM) and Candian Global Climate Model version 3 (CGCM3), while 

only adding value for CCSM-based runs with respect to maximum temperatures. 

Additionally, hierarchical cluster analysis and non-metric multipdimensional scaling 

provided recommendations into the maximum number models from the ensemble 

required to maintain model independence.  

 Projected minimum temperatures show an ensemble mean increase between 1° 

and 2°C in the winter and early spring, and an increase between 2° and 3°C for all other 

months. Maximum temperatures show an ensemble mean increase between 1° and 2°C in 

winter and early spring with increases between 2° and 4°C from mid spring through fall. 

Precipitation increases up to 10% in the eastern part of the region from late summer 

through early spring. Ensemble mean decreases of up to 10% occurred in January, April, 

June, and July. In western portions, precipitation increases up to 10% in January through 

March, May, August, September, and November with an up to 12% decrease in 

precipitation in March, May through July, and October. 

 

5.2 KEY FINDINGS 

The first key finding is that all models are relatively skillful (with respect to all 

four metrics) in reproducing daily minimum temperature trends for both sub-regions. The 

WRFG RCMs (run with CCSM and CGCM3 LBCs), the ECP2-GFDL, and GFDL-

timeslice show degradation in skill during the summer months (June, July, and August) 

while the RCM3-GFDL and ECP2-GFDL exhibit slight degradation from December 
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through March. The most consistently skillful models across all months are the RCM3- 

and CRCM-CGCM3. Additionally, the WRFG RCMs and ECP2-GFDL exhibit a 

minimum temperature cold bias of 2-4°C across all percentiles during the summer while 

the GFDL-timeslice exhibits a warm bias between 2° and 4°C below the 50
th

 percentile 

and 4° to 8°C above the 50
th

 percentile. December through March cold bias between 4° 

and 10°C plagues the RCM3- and ECP2-GFDL models. Less overall skill is observed for 

all models with respect to maximum temperature. The worst performing models are the 

RCM3- and ECP2-GFDL with strong cold biases between 2° and 10°C for several 

months. Degradation in skill is caused by a cold bias exhibited in the GFDL GCM that is 

transmitted and enhanced thought the downscaling process. The most skillful model 

across all months is the MM5I-CCSM in both sub-regions.  

With respect to mean precipitation (regardless of sub-region), is highly dependent 

on skill metric. With the Perkins’ and Willmott’s methodologies, the MM5I-CCSM is the 

most consistently skillful in all months, and the WRFG RCMs and CRCM-CCSM are the 

least skillful. By contrast, using RMSE suggests the CRCM RCMs are the most 

consistently skillful while the WRFG-CGCM3 and GFDL-timeslice are the least skillful. 

These differences demonstrate that complexity of assessing precipitation skill and the 

need to incorporate several skill metrics. Additionally, the WRFG RCMs overestimate 

either the frequency or magnitude of daily mean precipitation as they consistently exhibit 

wet bias of 15 to 30% (sometimes higher) above the 50
th

 percentile. The CRCM RCMs 

illustrate a consistent dry bias between 10 and 40% for most percentiles and months, 

indicating they underestimate either the frequency or magnitude of daily mean 

precipitation. 
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 The next major finding from this dissertation is Perkins’ skill score, Willmott’s 

index of agreement, RMSE, and MAE are strongly correlated relative to minimum and 

maximum temperature because the temperature values are constrained within the 

Gaussian distribution such that large outliers are rarely observed (as 99.5% of the data 

values are contained within three standard deviations of the mean). However, little 

correlation is found between RMSE and either Willmott’s or Perkins’ methods relative to 

mean precipitation. Large outliers from the mean are inherent in the gamma distribution 

(precipitation) and are enhanced in the calculation of RMSE and MAE because of its 

value-by-value comparison but not the other two metrics, which evaluate on value-by-

value basis relative to the underlying data distribution. Willmott’s and Perkins’ methods 

exhibit marginal correlations of 0.58 and 0.65 for the east and west sub-regions, 

respectively. This finding indicates multiple statistical metrics should be used to assess 

rather than one, which is the common approach to model validation in climate research. 

 The third important finding from this work found the comparison of 

climatological variables at the micro-, meso-, and synoptic-scale revealed systematic 

biases for those models which exhibited less skill. The RCM3 RCM illustrates excessive 

soil moisture content, lower-than-observed 500-mb heights and latent heat flux, and low 

sensible heat flux from late fall through early spring. Additionally, the dry bias observed 

in the CRCM RCMs is attributed to excessively high sensible heat flux and low cloud 

cover, particularly during the summer. This finding implies that much work still needs to 

be done within climate models to better represent the surface and sub-surface processes 

and feedbacks which are vital to local climate and crutial for stakeholders utilizing 
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climate model data as input to other modelings studies (e.g., hydrological modeling, crop 

modeling, etc.). 

 The fourth important finding from this dissertation is the value added by 

individual ensemble members was highly dependent on skill metric and month. Overall 

for both minimum and maximum temperature, the RCMs driven by the CCSM GCM 

added the most value mainly because the CCSM illustrated a relative lack of skill from 

mid-spring through mid-fall. Conversely, models driven by the GFDL added the least 

value because these models tended to enhance bias inherent in the GFDL GCM. The lone 

exception is the high value added by the GFDL-timeslice with respect to maximum 

temperature, indicating using observed ocean temperatures aid in predicting maximum 

temperatures for the Southeast United States. This point is illustrated by the GFDL-

timeslice and observations closely clustering in the hierarchical cluster analysis and non-

metric multidimensional scaling cluster analysis. Value added for precipitation, like 

temperature, was highly dependent on skill metric. The WRFG- and RCM3-CGCM3 

most consistently added value across all months with the MM5I-CCSM adding positive 

value at least nine months out of the year. The models adding the least value were the 

CRCM-CCSM and GFDL-timeslice. Hierarchical cluster and non-metric 

multidimensional scaling analysis for minimum and maximum temperature revealed 

models with similar LBCs tended to cluster together. The only exception was the GFDL-

timeslice which did not trend with either the GFDL-driven RCMs or other RCM-GCM 

combinations. This indicates that to achieve model independence, the effective number of 

is equal to one RCM per GCM plus the GFDL-timeslice; a total of four models from the 

nine member ensemble. Model clustering with respect to mean precipitation is less clear 
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than for clusters for temperature, particularly in the east sub-region; however, the 

effective number of models for precipitation, like temperature, is one RCM per GCM 

plus the GFDL-timeslice.This finding highlights the utility of downscaling to obtain 

information at local scales of interest while providing stakeholders with guidance on how 

to choose climate models and climate model-based data for their assessments to obtain 

reasonable uncertainty bounds (with respect to future climate) while building confidence 

in the fidelity of their projections. Additionally, this finding illustrates the nature to which 

RCMs are unable to separate themselves from their driving GCMs. 

 With respect to future projections, findings from this work show minimum 

temperature warming by at least 1°C for all months. The highest minimum temperature 

increases in both sub-regions are shown in the summer (2-3°C, respectively) while the 

smallest increases occur in the winter (1-2°C, respectively). Maximum temperature 

increases the most in the summer in both sub-regions (2-3°C in the east and 3-4°C in the 

west, respectively). The smallest increase in maximum temperature is observed in the 

winter (1-2°C for both sub-regions, respectively). Overall, change in mean precipitation 

is within ±10% in the east sub-region and ±12% in the west sub-region. Late fall through 

early spring exhibit slight increases in mean precipitation for both sub-regions while late 

spring through early fall exhibit no change to as much as a 12% decrease. Changes in 

precipitation are highly dependent on a location as not all locations within each sub-

region exhibit the same magnitude or directional change observed for their respective 

sub-region. Weighting the ensemble mean (regardless of metric) had little impact on 

mean temperature change, with the weighted mean always within ±0.1°C of the weighted 

mean. Additionally, weighted mean precipitation was always within ±1% of the 
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unweighted ensemble mean. These findings indicate the Southeast U.S., as a whole, will 

experience generally warmer and drier conditions from late spring through early fall by 

the 2040-2069 timeframe, placing potentially serious strain on the hydrologic and 

agricultural realms of the region. Although slight increases in precipitation are projected 

for late fall through early spring and projected temperatures are anticipated to increase 

less compared to late spring through early fall, it may not be enough to off-set warm 

season water losses, causing decision makers to heavily factor these findings into their 

risk assessments and adaptation proposals. 

 The last finding from this work showed that through utilization of the 

recommendations on the effective number of models, a smaller selective ensemble was 

created with the most skillful RCM from each GCM plus the GFDL-timeslice for each 

month. The new, smaller ensemble exhibited a slightly warmer mean in all months with 

respect to projected minimum temperature change. Maximum temperature change 

exhibited a slightly warmer mean in the winter, spring and fall while ensemble mean 

change decreased in the summer. Mean precipitation change in the east sub-region is 

wetter than the larger ensemble with only two months exhibiting a decrease in mean 

precipitation. The west sub-region saw enhanced drying in May through July and October 

with a wetter mean in January, April, and August. This finding illustrates the implications 

of climate model choice when constructing an ensemble to provide wide-ranging and 

realistic uncertainty bounds and central tendency of future climate projections. Selection 

of more than one RCM for each lateral boundary condition will bias ensemble-based 

projections toward an artificial result. 
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5.3 SCIENTIFIC MERIT AND RELEVANCE 

The Intergovernmental Panel on Climate Change’s 2007 report (AR4) calls for 

reliable estimates of the impacts to be expected under projected climate change and to 

gain trust and improve decisions, build awareness, and increase dialog necessary between 

stakeholders with knowledge to share (such as researchers) and with the wider public. 

Additionally, Cutter et al. (2012) and Seneviratne et al. (2012) highlight assessment of 

climate model skill as a barrier in confidently using model projections for managing risks 

associated with climate extremes. The findings from this work answer the call from the 

IPCC reports for the Southeast U.S. by not only providing reliable estimates of future 

climate change but also heavily assessing multiple variables from several dynamically 

downscaled climate models to enhance trust and confidence in their findings. Data from 

the assessed NARCCAP models are currently being used or will be used as input to 

hydrologic and crop models. This dissertation provides these users with an assessment of 

each models’ fidelity while providing specific shortcomings. This work serves as a 

template for the type of analysis that needs to be conducted for users of single or 

ensemble climate models to provide confidence in the data being used to conduct 

assessments of future climate. 

 Biases related to small-scale phenomenon such as the surface energy and water 

budgets are shown to feedback into the climate system in a negative way, impacting 

regional hindcasts of temperature and precipitation. The parameterization of land-

atmosphere processes such as latent and sensible heat flux must be further developed to 

close loopholes in this important process. Additionally, cloud physics must continue to be 

addressed as current parameterizations continue to lack in the representation of this 
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complex process which has major implications on the energy budget and precipitation. 

Lastly, large biases in soil moisture (low and high) illustrate the need for further 

modification and better representation of sub-surface processes.  

 

5.4 FUTURE WORK 

 At the time of performing the analysis for this dissertation, only nine NARCCAP 

members were available. Future work should incorporate other NARCCAP members, 

as they become available, to assess model skill and provide projections of future 

climate change. 

 Model skill focused on two sub-regions within the Southeast U.S. Future work should 

determine skill at individual grid locations. It is hypothesized that locations within the 

complex terrain of the Appalachian Mountains and along the Atlantic and Gulf Coasts 

will observe the greatest degradation in skill while other locations should prove 

relatively skillful. Additionally, it is hypothesized that temperature skill by grid point 

will be higher than precipitation, as the chaotic and prescribed nature of precipitation 

within the models lends itself to higher spatial variability than temperature. 

 To determine locations in which downscaling adds value, one should assess the 

spatial extent to which skill is added. It is hypothesized that locations within the 

Appalachian Mountains and along the Atlantic and Gulf Coasts will exhibit more 

value added for temperature than other locations. Precipitation may also exhibit more 

value added in the complex environments, however, the chaotic nature of 

precipitation makes a firm hypothesis weak at best. This future work will go beyond 

Di Luca et al. (2012a; 2012b) who used 300 km by 300 km grid blocks to calculate 
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value added. Future work will calculate value added at the native 50 km resolution of 

the RCMs.  

 Utilize differenet metrics to analyze modeled precipitation skill and future change 

such as the number of rain days and return intervals. As Trenberth et al. (2003) point 

out, as climate continues to change, the most probable changes in precipitation will 

mostly likely be in the intensity, frequency, and duration of precipitation events rather 

than mean precipitation. 

 Assess NARCCAP members’ ability to model the frequency of tropical cyclone 

activity for a historical reference period and explore changes in future tropical 

activity. Information from this assessment will be useful is coastal hazard and 

adaptation analysis.  

 Determine the role of the El Niño-Southern Oscillation (ENSO) within each of the 

NARCCAP models with particular emphasis on determining if the timeslice 

experiments (run with observed sea-surface conditions) are able to properly replicate 

this important process.
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APPENDIX A – “GRID_DESCRIPTION.TXT” 

 
 The following seven lines of code were saved in a text file called 

“grid_description.txt” and were used as the re-gridding descriptor file in CDO in 

conjunction with the nearest-neighbors algorithm. The first line in the code passes to 

CDO what the grid type/projection will be after re-gridding, in this case the grid type will 

simply be a longitude/latitude grid. The next two lines tell CDO the number of grid points 

in the x- and y-directions. Line four informs CDO that the first grid points in the x-

direction (longitude) begin at -126°W with line five indicating the grid points will be 

spaced at 0.5° longitude increments. Line six informs CDO that the first grid points in the 

y-direction (latitude) begin at 20°N with line seven indicating the grid points will be 

spaced at 0.5° latitude increments. 

gridtype = lonlat 

xsize = 134 

ysize = 104 

xfirst = -126 

xinc = 0.5 

yfirst = 20 

yinc = 0.5 
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APPENDIX B – R SCRIPTS 

 
B.1 EXAMPLE CODE TO EXTRACT EAST SUB-REGION DATA POINTS 

This code extracts only the data points I want for the east sub-region after I have 

re-mapped the data from the native coordinates run by the model executors.  

 

#open up the R library to read in and manipulate netCDF files 

library(ncdf) 

 

#open the netCDF file and define latitude, longitude, and the variable 

#of interest 

ex.nc = open.ncdf("C://Dissertation//tasmin_RCM3_gfdl_1970-

1999_C_remap_sel_dec.nc") 

y = get.var.ncdf( ex.nc, "lat")      # coordinate variable 

x = get.var.ncdf( ex.nc, "lon")      # coordinate variable 

z = get.var.ncdf( ex.nc, "tasmin")   # variable 

 

#tf = 30.5 to = 31  to_f = 31.5 tt = 32 

#tt_f = 32.5 tth = 33 tth_f = 33.5 tfo = 34      

#tfo_f = 34.5 

#tfi = 35 tfi_f = 35.5 ts = 36  ts_f = 36.5 

#nt = -90 no_f = -91.5 efo_f = -84.5 efo = -84 

#en_f = -89.5 no = -91 et_f = -83.5 et = -83 

#en = -89 nt_f = -90.5 etw_f = -82.5 etw = -82 

#ee_f = -88.5 es = -87 eo_f = -81.5 

#ee = -88 esi_f = -86.5 

#es_f = -87.5 esi = -86 

#ef_f = -85.5 ef = 85 

 

#eo = -81 e_f = -80.5 e = -80  sn_f = -79.5 sn = -79  

#se_f = -78.5 se = -78 

#ss_f = -77.5 ss = -77 ssi_f = -76.5 ssi = -76 

 

#extract the data points of interest from the netCDF file
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tf_efo_f<-z[20,6,] 

tf_efo<-z[21,6,] 

tf_et_f<-z[22,6,] 

tf_et<-z[23,6,] 

tf_etw_f<-z[24,6,] 

tf_etw<-z[25,6,] 

 

to_ef<-z[19,7,] 

to_efo_f<-z[20,7,] 

to_efo<-z[21,7,] 

to_et_f<-z[22,7,] 

to_et<-z[23,7,] 

to_etw_f<-z[24,7,] 

to_etw<-z[25,7,] 

to_eo_f<-z[26,7,] 

 

to_f_ef<-z[19,8,] 

to_f_efo_f<-z[20,8,] 

to_f_efo<-z[21,8,] 

to_f_et_f<-z[22,8,] 

to_f_et<-z[23,8,] 

to_f_etw_f<-z[24,8,] 

to_f_etw<-z[25,8,] 

to_f_eo_f<-z[26,8,] 

 

tt_ef<-z[19,9,] 

tt_efo_f<-z[20,9,] 

tt_efo<-z[21,9,] 

tt_et_f<-z[22,9,] 

tt_et<-z[23,9,] 

tt_etw_f<-z[24,9,] 

tt_etw<-z[25,9,] 

tt_eo_f<-z[26,9,] 

tt_eo<-z[27,9,] 

 

tt_f_ef<-z[19,10,] 

tt_f_efo_f<-z[20,10,] 

tt_f_efo<-z[21,10,] 

tt_f_et_f<-z[22,10,] 

tt_f_et<-z[23,10,] 

tt_f_etw_f<-z[24,10,] 

tt_f_etw<-z[25,10,] 

tt_f_eo_f<-z[26,10,] 

tt_f_eo<-z[27,10,] 

tt_f_e_f<-z[28,10,] 

 

tth_ef<-z[19,11,] 

tth_efo_f<-z[20,11,] 

tth_efo<-z[21,11,] 

tth_et_f<-z[22,11,] 

tth_et<-z[23,11,] 

tth_etw_f<-z[24,11,] 

tth_etw<-z[25,11,] 

tth_eo_f<-z[26,11,] 

tth_eo<-z[27,11,] 

tth_e_f<-z[28,11,] 

tth_e<-z[29,11,] 
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tth_sn_f<-z[30,11,] 

 

tth_f_ef_f<-z[18,12,] 

tth_f_ef<-z[19,12,] 

tth_f_efo_f<-z[20,12,] 

tth_f_efo<-z[21,12,] 

tth_f_et_f<-z[22,12,] 

tth_f_et<-z[23,12,] 

tth_f_etw_f<-z[24,12,] 

tth_f_etw<-z[25,12,] 

tth_f_eo_f<-z[26,12,] 

tth_f_eo<-z[27,12,] 

tth_f_e_f<-z[28,12,] 

tth_f_e<-z[29,12,] 

tth_f_sn_f<-z[30,12,] 

tth_f_sn<-z[31,12,] 

 

tfo_ef_f<-z[18,13,] 

tfo_ef<-z[19,13,] 

tfo_efo_f<-z[20,13,] 

tfo_efo<-z[21,13,] 

tfo_et_f<-z[22,13,] 

tfo_et<-z[23,13,] 

tfo_etw_f<-z[24,13,] 

tfo_etw<-z[25,13,] 

tfo_eo_f<-z[26,13,] 

tfo_eo<-z[27,13,] 

tfo_e_f<-z[28,13,] 

tfo_e<-z[29,13,] 

tfo_sn_f<-z[30,13,] 

tfo_sn<-z[31,13,] 

tfo_se_f<-z[32,13,] 

tfo_se<-z[33,13,] 

 

tfo_f_ef_f<-z[18,14,] 

tfo_f_ef<-z[19,14,] 

tfo_f_efo_f<-z[20,14,] 

tfo_f_efo<-z[21,14,] 

tfo_f_et_f<-z[22,14,] 

tfo_f_et<-z[23,14,] 

tfo_f_etw_f<-z[24,14,] 

tfo_f_etw<-z[25,14,] 

tfo_f_eo_f<-z[26,14,] 

tfo_f_eo<-z[27,14,] 

tfo_f_e_f<-z[28,14,] 

tfo_f_e<-z[29,14,] 

tfo_f_sn_f<-z[30,14,] 

tfo_f_sn<-z[31,14,] 

tfo_f_se_f<-z[32,14,] 

tfo_f_se<-z[33,14,] 

tfo_f_ss_f<-z[34,14,] 

 

tfi_ef_f<-z[18,15,] 

tfi_ef<-z[19,15,] 

tfi_efo_f<-z[20,15,] 

tfi_efo<-z[21,15,] 

tfi_et_f<-z[22,15,] 
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tfi_et<-z[23,15,] 

tfi_etw_f<-z[24,15,] 

tfi_etw<-z[25,15,] 

tfi_eo_f<-z[26,15,] 

tfi_eo<-z[27,15,] 

tfi_e_f<-z[28,15,] 

tfi_e<-z[29,15,] 

tfi_sn_f<-z[30,15,] 

tfi_sn<-z[31,15,] 

tfi_se_f<-z[32,15,] 

tfi_se<-z[33,15,] 

tfi_ss_f<-z[34,15,] 

tfi_ss<-z[35,15,] 

 

tfi_f_efo<-z[21,16,] 

tfi_f_et_f<-z[22,16,] 

tfi_f_et<-z[23,16,] 

tfi_f_etw_f<-z[24,16,] 

tfi_f_etw<-z[25,16,] 

tfi_f_eo_f<-z[26,16,] 

tfi_f_eo<-z[27,16,] 

tfi_f_e_f<-z[28,16,] 

tfi_f_e<-z[29,16,] 

tfi_f_sn_f<-z[30,16,] 

tfi_f_sn<-z[31,16,] 

tfi_f_se_f<-z[32,16,] 

tfi_f_se<-z[33,16,] 

tfi_f_ss_f<-z[34,16,] 

tfi_f_ss<-z[35,16,] 

tfi_f_ssi_f<-z[36,16,] 

tfi_f_ssi<-z[37,16,] 

 

ts_et<-z[23,17,] 

ts_etw_f<-z[24,17,] 

ts_etw<-z[25,17,] 

ts_eo_f<-z[26,17,] 

ts_eo<-z[27,17,] 

ts_e_f<-z[28,17,] 

ts_e<-z[29,17,] 

ts_sn_f<-z[30,17,] 

ts_sn<-z[31,17,] 

ts_se_f<-z[32,17,] 

ts_se<-z[33,17,] 

ts_ss_f<-z[34,17,] 

ts_ss<-z[35,17,] 

ts_ssi_f<-z[36,17,] 

 

ts_f_etw<-z[25,18,] 

ts_f_eo_f<-z[26,18,] 

ts_f_eo<-z[27,18,] 

ts_f_e_f<-z[28,18,] 

ts_f_e<-z[29,18,] 

ts_f_sn_f<-z[30,18,] 

ts_f_sn<-z[31,18,] 

ts_f_se_f<-z[32,18,] 

ts_f_se<-z[33,18,] 

ts_f_ss_f<-z[34,18,] 
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ts_f_ss<-z[35,18,] 

ts_f_ssi_f<-z[36,18,] 

ts_f_ssi<-z[37,18,] 

 

 

#combine and make a data frame out of each of the extracted data points 

 

 

data<-cbind(tf_efo_f,tf_efo,tf_et_f,tf_et,tf_etw_f,tf_etw,to_ef, 

to_efo_f,to_efo,to_et_f,to_et,to_etw_f,to_etw,to_eo_f,to_f_ef, 

to_f_efo_f,to_f_efo,to_f_et_f,to_f_et,to_f_etw_f,to_f_etw,to_f_eo_f, 

tt_ef,tt_efo_f,tt_efo,tt_et_f,tt_et,tt_etw_f,tt_etw,tt_eo_f,tt_eo, 

tt_f_ef,tt_f_efo_f,tt_f_efo,tt_f_et_f,tt_f_et,tt_f_etw_f,tt_f_etw, 

tt_f_eo_f,tt_f_eo,tt_f_e_f,tth_ef,tth_efo_f,tth_efo,tth_et_f,tth_et, 

tth_etw_f,tth_etw,tth_eo_f,tth_eo,tth_e_f,tth_e,tth_sn_f,tth_f_ef_f, 

tth_f_ef,tth_f_efo_f,tth_f_efo,tth_f_et_f,tth_f_et,tth_f_etw_f, 

tth_f_etw,tth_f_eo_f,tth_f_eo,tth_f_e_f,tth_f_e,tth_f_sn_f,tth_f_sn, 

tfo_ef_f,tfo_ef,tfo_efo_f,tfo_efo,tfo_et_f,tfo_et,tfo_etw_f,tfo_etw, 

tfo_eo_f,tfo_eo,tfo_e_f,tfo_e,tfo_sn_f,tfo_sn,tfo_se_f,tfo_se, 

tfo_f_ef_f,tfo_f_ef,tfo_f_efo_f,tfo_f_efo,tfo_f_et_f,tfo_f_et, 

tfo_f_etw_f,tfo_f_etw,tfo_f_eo_f,tfo_f_eo,tfo_f_e_f,tfo_f_e,tfo_f_sn_f, 

tfo_f_sn,tfo_f_se_f,tfo_f_se,tfo_f_ss_f,tfi_ef_f,tfi_ef,tfi_efo_f, 

tfi_efo,tfi_et_f,tfi_et,tfi_etw_f,tfi_etw,tfi_eo_f,tfi_eo,tfi_e_f, 

tfi_e,tfi_sn_f,tfi_sn,tfi_se_f,tfi_se,tfi_ss_f,tfi_ss,tfi_f_efo,tfi_f_e

t_f,tfi_f_et,tfi_f_etw_f,tfi_f_etw,tfi_f_eo_f,tfi_f_eo,tfi_f_e_f, 

tfi_f_e,tfi_f_sn_f,tfi_f_sn,tfi_f_se_f,tfi_f_se,tfi_f_ss_f,tfi_f_ss, 

tfi_f_ssi_f,tfi_f_ssi,ts_et,ts_etw_f,ts_etw,ts_eo_f,ts_eo,ts_e_f,ts_e, 

ts_sn_f,ts_sn,ts_se_f,ts_se,ts_ss_f,ts_ss,ts_ssi_f,ts_f_etw,ts_f_eo_f, 

ts_f_eo,ts_f_e_f,ts_f_e,ts_f_sn_f,ts_f_sn,ts_f_se_f,ts_f_se,ts_f_ss_f, 

ts_f_ss,ts_f_ssi_f,ts_f_ssi) 

 

#write the data frame to a .csv file 

write.table(data,file="C:\\Dissertation\\tasmin_RCM3_gfdl_extract_east_

dec.csv",sep=",",row.names=F,quote=F,col.names=c("305_845","305_84", 

"305_835","305_83","305_825","305_82","31_85","31_845","31_84", 

"31_835","31_83","31_825","31_82","31_815","315_85","315_845","315_84",

"315_835","315_83","315_825","315_82","315_815","32_85","32_845", 

"32_84","32_835","32_83","32_825","32_82","32_815","32_81","325_85", 

"325_845","325_84","325_835","325_83","325_825","325_82","325_815", 

"325_81","325_805","33_85","33_845","33_84","33_835","33_83","33_825", 

"33_82","33_815","33_81","33_805","33_80","33_795","335_855","335_85", 

"335_845","335_84","335_835","335_83","335_825","335_82","335_815", 

"335_81","335_805","335_80","335_795","335_79","34_855","34_85", 

"34_845","34_84","34_835","34_83","34_825","34_82","34_815","34_81", 

"34_805","34_80","34_795","34_79","34_785","34_78","345_855","345_85", 

"345_845","345_84","345_835","345_83","345_825","345_82","345_815", 

"345_81","345_805","345_80","345_795","345_79","345_785","345_78", 

"345_775","35_855","35_85","35_845","35_84","35_835","35_83","35_825", 

"35_82","35_815","35_81","35_805","35_80","35_795","35_79","35_785", 

"35_78","35_775","35_77","355_84","355_835","355_83","355_825", 

"355_82","355_815","355_81","355_805","355_80","355_795","355_79", 

"355_785","355_78","355_775","355_77","355_765","355_76","36_83", 

"36_825","36_82","36_815","36_81","36_805","36_80","36_795","36_79", 

"36_785","36_78","36_775","36_77","36_765","365_82","365_815","365_81",

"365_805","365_80","365_795","365_79","365_785","365_78","365_775", 

"365_77","365_765","365_76"))
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B.2 PERKINS’ SKILL SCORE COMPUTATION 

The next code computes Perkins’ skill score for a given model: 

 
#open the observations table and the MM5I-CCSM model output 

l<-read.csv(file="C:\\Dissertation\\Tmin_obs_apr_extract_east_sub.csv", 

sep=",", header=TRUE) 

ll<-read.csv(file="C:\\Dissertation\\ 

tas_MM5I_ccsm_daymin_apr_extract_east_sub.csv",sep=",", header=TRUE) 

 

#make the observations and model data into two separate vectors 

obs<-c(l$X305_845,l$X305_84,l$X305_835,l$X305_83,l$X305_825,l$X305_82, 

l$X31_85,l$X31_845,l$X31_84,l$X31_835,l$X31_83,l$X31_825,l$X31_82, 

l$X31_815,l$X315_85,l$X315_845,l$X315_84,l$X315_835,l$X315_83, 

l$X315_825,l$X315_82,l$X315_815,l$X32_85,l$X32_845,l$X32_84,l$X32_835, 

l$X32_83,l$X32_825,l$X32_82,l$X32_815,l$X32_81,l$X325_85,l$X325_845, 

l$X325_84,l$X325_835,l$X325_83,l$X325_825,l$X325_82,l$X325_815, 

l$X325_81,l$X325_805,l$X33_85,l$X33_845,l$X33_84,l$X33_835,l$X33_83, 

l$X33_825,l$X33_82,l$X33_815,l$X33_81,l$X33_805,l$X33_80,l$X33_795, 

l$X335_855,l$X335_85,l$X335_845,l$X335_84,l$X335_835,l$X335_83, 

l$X335_825,l$X335_82,l$X335_815,l$X335_81,l$X335_805,l$X335_80, 

l$X335_795,l$X335_79,l$X34_855,l$X34_85,l$X34_845,l$X34_84,l$X34_835, 

l$X34_83,l$X34_825,l$X34_82,l$X34_815,l$X34_81,l$X34_805,l$X34_80, 

l$X34_795,l$X34_79,l$X34_785,l$X34_78,l$X345_855,l$X345_85,l$X345_845, 

l$X345_84,l$X345_835,l$X345_83,l$X345_825,l$X345_82,l$X345_815, 

l$X345_81,l$X345_805,l$X345_80,l$X345_795,l$X345_79,l$X345_785, 

l$X345_78,l$X345_775,l$X35_855,l$X35_85,l$X35_845,l$X35_84,l$X35_835, 

l$X35_83,l$X35_825,l$X35_82,l$X35_815,l$X35_81,l$X35_805,l$X35_80, 

l$X35_795,l$X35_79,l$X35_785,l$X35_78,l$X35_775,l$X35_77,l$X355_84, 

l$X355_835,l$X355_83,l$X355_825,l$X355_82,l$X355_815,l$X355_81, 

l$X355_805,l$X355_80,l$X355_795,l$X355_79,l$X355_785,l$X355_78, 

l$X355_775,l$X355_77,l$X355_765,l$X355_76,l$X36_83,l$X36_825,l$X36_82, 

l$X36_815,l$X36_81,l$X36_805,l$X36_80,l$X36_795,l$X36_79,l$X36_785, 

l$X36_78,l$X36_775,l$X36_77,l$X36_765,l$X365_82,l$X365_815,l$X365_81, 

l$X365_805,l$X365_80,l$X365_795,l$X365_79,l$X365_785,l$X365_78, 

l$X365_775,l$X365_77,l$X365_765,l$X365_76) 

 

mm<-c(ll$X305_845,ll$X305_84,ll$X305_835,ll$X305_83,ll$X305_825, 

ll$X305_82,ll$X31_85,ll$X31_845,ll$X31_84,ll$X31_835,ll$X31_83ll$X31_82

5,ll$X31_82,ll$X31_815,ll$X315_85,ll$X315_845,ll$X315_84,ll$X315_835, 

ll$X315_83,ll$X315_825,ll$X315_82,ll$X315_815,ll$X32_85,ll$X32_845, 

ll$X32_84,ll$X32_835,ll$X32_83,ll$X32_825,ll$X32_82,ll$X32_815, 

ll$X32_81,ll$X325_85,ll$X325_845,ll$X325_84,ll$X325_835,ll$X325_83, 

ll$X325_825,ll$X325_82,ll$X325_815,ll$X325_81,ll$X325_805,ll$X33_85, 

ll$X33_845,ll$X33_84,ll$X33_835,ll$X33_83,ll$X33_825,ll$X33_82, 

ll$X33_815,ll$X33_81,ll$X33_805,ll$X33_80,ll$X33_795,ll$X335_855, 

ll$X335_85,ll$X335_845,ll$X335_84,ll$X335_835,ll$X335_83,ll$X335_825, 

ll$X335_82,ll$X335_815,ll$X335_81,ll$X335_805,ll$X335_80,ll$X335_795, 

ll$X335_79,ll$X34_855,ll$X34_85,ll$X34_845,ll$X34_84,ll$X34_835, 

ll$X34_83,ll$X34_825,ll$X34_82,ll$X34_815,ll$X34_81,ll$X34_805, 

ll$X34_80,ll$X34_795,ll$X34_79,ll$X34_785,ll$X34_78,ll$X345_855, 

ll$X345_85,ll$X345_845,ll$X345_84,ll$X345_835,ll$X345_83,ll$X345_825, 

ll$X345_82,ll$X345_815,ll$X345_81,ll$X345_805,ll$X345_80,ll$X345_795, 

ll$X345_79,ll$X345_785,ll$X345_78,ll$X345_775,ll$X35_855,ll$X35_85, 

ll$X35_845,ll$X35_84,ll$X35_835,ll$X35_83,ll$X35_825,ll$X35_82, 

ll$X35_815,ll$X35_81,ll$X35_805,ll$X35_80,ll$X35_795,ll$X35_79, 
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ll$X35_785,ll$X35_78,ll$X35_775,ll$X35_77,ll$X355_84,ll$X355_835, 

ll$X355_83,ll$X355_825,ll$X355_82,ll$X355_815,ll$X355_81,ll$X355_805, 

ll$X355_80,ll$X355_795,ll$X355_79,ll$X355_785,ll$X355_78,ll$X355_775, 

ll$X355_77,ll$X355_765,ll$X355_76,ll$X36_83,ll$X36_825,ll$X36_82, 

ll$X36_815,ll$X36_81,ll$X36_805,ll$X36_80,ll$X36_795,ll$X36_79, 

ll$X36_785,ll$X36_78,ll$X36_775,ll$X36_77,ll$X36_765,ll$X365_82,l 

l$X365_815,ll$X365_81,ll$X365_805,ll$X365_80,ll$X365_795,ll$X365_79, 

ll$X365_785,ll$X365_78,ll$X365_775,ll$X365_77,ll$X365_765,ll$X365_76) 

 

#combine the two vectors into a data frame by columns 

ff<-cbind(obs,mm) 

 

#write the data frame to a .csv file  

bb<-write.table(ff,file="C://Dissertation//tasmin_east_apr.csv", 

sep=",",row.names=F, quote=F,col.names=c("Obs","MM5I_CCSM")) 

 

#read the .csv file back into R 

gg<-read.csv(file="C:\\Dissertation\\tasmin_east_apr.csv",sep=",", 

header=TRUE) 

 

#sort each of the columns from smallest value to largest value 

z1<-sort(gg$Obs) 

z2<-sort(gg$MM5I_CCSM) 

 

#combine the sorted vectors back into a data frame 

fff<-cbind(z1,z2) 

 

#use only those values which fall between the minimum and maximum 

#values found in observations  

a1<-z1[which(z1>=-12 & z1<=25)] 

b1<-z2[which(z2>=-12 & z2<=25)] 

 

#define the bins to use to create a histogram 

bins<-seq(-12,25,by=0.5) 

 

#create a histogram based on the bins defined above for both the 

#observed data and model data 

a2<-hist(a1, breaks=bins, freq=FALSE) 

b2<-hist(b1, breaks=bins, freq=FALSE) 

 

#extract the density value from the histogram – this is the height of 

#each bin in the histogram 

a3<-a2$density 

b3<-b2$density 

 

#combine the two density vectors into a data frame 

b4<-cbind(a3,b3) 

 

#find the minimum value at each row between the observations and the 

#model 

b5<-apply(b4,1,min) 

 

#sum each of the minimum values found above and divide by 2 because the 

#bins were spaced every 0.5 degrees C. If the bin size had been 1, 

#there is no need to divide by anything. If the bin size was 0.25, the 

#user needs to divide the sum by 4, etc. The value found in this step 

#is the model’s Perkins’ skill score. 
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b6<-(sum(b5))/2 

 

#save the Perkins’ skill score as a new variable 

data<-b6 

 

#write the Perkins’ skill score to a table 

write.table(data,file="C:\\Dissertation\\tasmin_east_skill_apr.csv", 

sep=",",row.names=c("Apr"),quote=F, col.names=c("MM5I_CCSM")) 

 

 

B.3 WILLMOTT’S INDEX OF AGREEMENT COMPUTATION 

#Define the function for 2 times the sum of the magnitude of the 

#difference between individual observations about the observed mean 

right1<-function(obs) c*sum(abs(obs-mean_ob)) 

 

#Define the function for the sum of the magnitude of the difference 

#between individual observations and model results 

left1<-function(pred1,obs) sum(abs(pred1-obs)) 

 

#Function to define Equation 2 from Section 2.1 

will<-function(right1,left1,pred1,obs) if (left1<=right1){ 

d_r<-1-((sum(abs(pred1-obs)))/(c*sum(abs(obs-mean_ob)))) 

} else { 

d_r<-((c*sum(abs(obs-mean_ob)))/(sum(abs(pred1-obs))))-1 

} 

 

#Read in a dataset 

gg<-read.csv(file="H:\\Dissertation\\tasmin_west_dec.csv", 

sep=",", header=TRUE) 

 

#Extract each column corresponding to individual models 

y1<-sort(gg$Obs) 

y2<-sort(gg$MM5I_CCSM) 

y3<-sort(gg$RCM3_GFDL) 

y4<-sort(gg$ECP2_GFDL) 

y5<-sort(gg$WRFG_CCSM) 

y6<-sort(gg$WRFG_CGCM3) 

y7<-sort(gg$RCM3_CGCM3) 

y8<-sort(gg$CRCM_CGCM3) 

y9<-sort(gg$CRCM_CCSM) 

y10<-sort(gg$HRM3_HADCM3) 

y11<-sort(gg$GFDL_TS) 

 

#Give the variables defined above a different variable name 

a1<-y1 

b1<-y2 

c1<-y3 

d1<-y4 

e1<-y5 

f1<-y6 

g1<-y7 

h1<-y8 

i1<-y9 

j1<-y10 
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k1<-y11 

 

#Define c=2 based on Willmott et al (2011) 

c=2 

 

#Find the mean of the observations (O-bar) 

mean_ob<-mean(a1) 

#Use the functions defined above to calculate Willmott’s index of 

#agreement for each individual model 

aa<-right1(a1) 

ab<-left1(b1,a1) 

will1a<-will(aa,ab,b1,a1) 

 

aa<-right1(a1) 

ab<-left1(c1,a1) 

will2a<-will(aa,ab,c1,a1) 

 

aa<-right1(a1) 

ab<-left1(d1,a1) 

will3a<-will(aa,ab,d1,a1) 

 

aa<-right1(a1) 

ab<-left1(e1,a1) 

will4a<-will(aa,ab,e1,a1) 

 

aa<-right1(a1) 

ab<-left1(f1,a1) 

will5a<-will(aa,ab,f1,a1) 

 

aa<-right1(a1) 

ab<-left1(g1,a1) 

will6a<-will(aa,ab,g1,a1) 

 

aa<-right1(a1) 

ab<-left1(h1,a1) 

will7a<-will(aa,ab,h1,a1) 

 

aa<-right1(a1) 

ab<-left1(i1,a1) 

will8a<-will(aa,ab,i1,a1) 

 

aa<-right1(a1) 

ab<-left1(k1,a1) 

will9a<-will(aa,ab,k1,a1) 

 

 
 

B.4 ROOT MEAN SQUARE ERROR COMPUTATION 

This code computes the root mean square error for a model: 

 
#read in the data values 

gg<-read.csv(file="C:\\Dissertation\\tasmin_east_dec.csv",sep=",", 

header=TRUE) 
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#create a vector and sort from smallest to largest value from 

#observations and model 

y1<-sort(gg$Obs) 

y2<-sort(gg$MM5I_CCSM) 

 

#combine the sorted vectors into a data frame 

fff<-cbind(y1,y2) 

 

#function to define root mean square error 

rmse <- function(obs, pred) sqrt(mean((obs-pred)^2)) 

 

#calculate the root mean square error between observations and model 

b6<-rmse(a1,b1) 

 

#save the root mean square error to a different variable 

data<-b6 

 

#write the root mean square error to a .csv file 

write.table(data,file="C:\\Dissertation\\tasmin_east_rmse_dec.csv", 

sep=",",row.names=c("dec"),quote=F, col.names=c("MM5I-CCSM")) 

 

 

 

B.5 HOVMOLLER PLOT SCRIPT 

This code creates a hovmoller plot from the Perkins’ skill score values. 

Additionally, code is included to make the color palate.  

 
#open each of the libraries that either will or potentially could be 

#used to create the hovmoller plots 

library(reshape) 

library(fields) 

library(colorRamps) 

library(RColorBrewer) 

library(maps) 

library(fields) 

library(grid) 

library(lattice) 

library(graphics)  

library(grDevices) 

library(utils) 

library(zoo) 

library(tools) 

library(ade4) 

 

#open the R script which will plot the hovmoller plots 

source("C://Dissertation//myImagePlot.R") 

 

#read in the data from all months 

gg<-read.csv(file="C:\\Dissertation\\tasmin_east_skill_dec.csv", 

sep=",",header=T) 

hh<-read.csv(file="C:\\Dissertation\\tasmin_east_skill_jan.csv", 

sep=",",header=T) 
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ii<-read.csv(file="C:\\Dissertation\\tasmin_east_skill_feb.csv", 

sep=",",header=T) 

gg2<-read.csv(file="C:\\Dissertation\\tasmin_east_skill_mar.csv", 

sep=",",header=T) 

hh2<-read.csv(file="C:\\Dissertation\\tasmin_east_skill_apr.csv", 

sep=",",header=T) 

ii2<-read.csv(file="C:\\Dissertation\\tasmin_east_skill_may.csv", 

sep=",",header=T) 

gg3<-read.csv(file="C:\\Dissertation\\tasmin_east_skill_jun.csv", 

sep=",",header=T) 

hh3<-read.csv(file="C:\\Dissertation\\tasmin_east_skill_jul.csv", 

sep=",",header=T) 

ii3<-read.csv(file="C:\\Dissertation\\tasmin_east_skill_aug.csv", 

sep=",",header=T) 

gg4<-read.csv(file="C:\\Dissertation\\tasmin_east_skill_sep.csv", 

sep=",",header=T) 

hh4<-read.csv(file="C:\\Dissertation\\tasmin_east_skill_oct.csv", 

sep=",",header=T) 

ii4<-read.csv(file="C:\\Dissertation\\tasmin_east_skill_nov.csv", 

sep=",",header=T) 

 

#make data frames for each of the ensemble model members 

data1<-rbind(gg$MM5I_CCSM,hh$MM5I_CCSM,ii$MM5I_CCSM,gg2$MM5I_CCSM, 

hh2$MM5I_CCSM,ii2$MM5I_CCSM,gg3$MM5I_CCSM,hh3$MM5I_CCSM,ii3$MM5I_CCSM, 

gg4$MM5I_CCSM,hh4$MM5I_CCSM,ii4$MM5I_CCSM) 

 

data2<-rbind(gg$RCM3_GFDL,hh$RCM3_GFDL,ii$RCM3_GFDL,gg2$RCM3_GFDL, 

hh2$RCM3_GFDL,ii2$RCM3_GFDL,gg3$RCM3_GFDL,hh3$RCM3_GFDL,ii3$RCM3_GFDL, 

gg4$RCM3_GFDL,hh4$RCM3_GFDL,ii4$RCM3_GFDL) 

 

data3<-rbind(gg$ECP2_GFDL,hh$ECP2_GFDL,ii$ECP2_GFDL,gg2$ECP2_GFDL, 

hh2$ECP2_GFDL,ii2$ECP2_GFDL,gg3$ECP2_GFDL,hh3$ECP2_GFDL,ii3$ECP2_GFDL, 

gg4$ECP2_GFDL,hh4$ECP2_GFDL,ii4$ECP2_GFDL) 

 

data4<-rbind(gg$WRFG_CCSM,hh$WRFG_CCSM,ii$WRFG_CCSM,gg2$WRFG_CCSM, 

hh2$WRFG_CCSM,ii2$WRFG_CCSM,gg3$WRFG_CCSM,hh3$WRFG_CCSM,ii3$WRFG_CCSM, 

gg4$WRFG_CCSM,hh4$WRFG_CCSM,ii4$WRFG_CCSM) 

 

data5<-rbind(gg$WRFG_CGCM3,hh$WRFG_CGCM3,ii$WRFG_CGCM3,gg2$WRFG_CGCM3, 

hh2$WRFG_CGCM3,ii2$WRFG_CGCM3,gg3$WRFG_CGCM3,hh3$WRFG_CGCM3, 

ii3$WRFG_CGCM3,gg4$WRFG_CGCM3,hh4$WRFG_CGCM3,ii4$WRFG_CGCM3) 

 

data6<-rbind(gg$RCM3_CGCM3,hh$RCM3_CGCM3,ii$RCM3_CGCM3,gg2$RCM3_CGCM3, 

hh2$RCM3_CGCM3,ii2$RCM3_CGCM3,gg3$RCM3_CGCM3,hh3$RCM3_CGCM3, 

ii3$RCM3_CGCM3,gg4$RCM3_CGCM3,hh4$RCM3_CGCM3,ii4$RCM3_CGCM3) 

data7<-rbind(gg$CRCM_CGCM3,hh$CRCM_CGCM3,ii$CRCM_CGCM3,gg2$CRCM_CGCM3, 

hh2$CRCM_CGCM3,ii2$CRCM_CGCM3,gg3$CRCM_CGCM3,hh3$CRCM_CGCM3, 

ii3$CRCM_CGCM3,gg4$CRCM_CGCM3,hh4$CRCM_CGCM3,ii4$CRCM_CGCM3) 

 

data8<-rbind(gg$CRCM_CCSM,hh$CRCM_CCSM,ii$CRCM_CCSM,gg2$CRCM_CCSM, 

hh2$CRCM_CCSM,ii2$CRCM_CCSM,gg3$CRCM_CCSM,hh3$CRCM_CCSM,ii3$CRCM_CCSM, 

gg4$CRCM_CCSM,hh4$CRCM_CCSM,ii4$CRCM_CCSM) 

 

data10<-rbind(gg$GFDL_TS,hh$GFDL_TS,ii$GFDL_TS,gg2$GFDL_TS,hh2$GFDL_TS, 

ii2$GFDL_TS,gg3$GFDL_TS,hh3$GFDL_TS,ii3$GFDL_TS,gg4$GFDL_TS, 

hh4$GFDL_TS,ii4$GFDL_TS) 
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#combine each of the data frames into a larger data frame and put each 

#into their own column 

data<-cbind(data1,data2,data3,data4,data5,data6,data7,data8,data10) 

 

#open a new blank window for plotting 

windows() 

 

#this is a call to say where the hovmoller plot will be saved, what it 

#will be called and its dimensions 

png(filename = "C://Dissertation//east_tmin_hovmoller.png", width = 

1250, height = 800,units = "px", pointsize = 13.5, bg = "white", 

res = 130,restoreConsole = TRUE) 

 

#create the hovmoller plot using the R script “myImagePlot.R” 

myImagePlot(data,zlim=c(0.4,1),title=c("East Subregion Tmin Perkins’ 

skill scores"),xLabels=c("MM5I-CC","RCM3-GF","ECP2-GF","WRFG-CC", 

"WRFG-CG3","RCM3-CG3","CRCM-CG3","CRCM-CC","GFDL-TS"),yLabels=c("Dec", 

"Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov")) 

 

#turn off the graphics driver 

dev.off() 

 

####################################################################### 
#Code for myImagePlot.R 

####################################################################### 
# ----- Define a function for plotting a matrix ----- # 

myImagePlot <- function(x, ...){ 

     min <- min(x) 

     max <- max(x) 

     yLabels <- rownames(x) 

     xLabels <- colnames(x) 

     title <-c() 

  # check for additional function arguments 

  if( length(list(...)) ){ 

    Lst <- list(...) 

    if( !is.null(Lst$zlim) ){ 

       min <- Lst$zlim[1] 

       max <- Lst$zlim[2] 

    } 

    if( !is.null(Lst$yLabels) ){ 

       yLabels <- c(Lst$yLabels) 

    } 

    if( !is.null(Lst$xLabels) ){ 

       xLabels <- c(Lst$xLabels) 

    } 

    if( !is.null(Lst$title) ){ 

       title <- Lst$title 

    } 

  } 

# check for null values 

if( is.null(xLabels) ){ 

   xLabels <- c(1:ncol(x)) 

} 

if( is.null(yLabels) ){ 

   yLabels <- c(1:nrow(x)) 

} 
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layout(matrix(data=c(1,2), nrow=1, ncol=2), widths=c(6,1), 

heights=c(1,1)) 

 

 # Red and green range from 0 to 1 while Blue ranges from 1 to 0 

 ColorRamp <- rgb( seq(0,1,length=255),  # Red 

                   seq(0,1,length=255),  # Green 

                   seq(0,1,length=255))  # Blue 

 

ramp=colorRamp(c("blue","white","red"),space ="rgb") 

kleur <- rgb( ramp(seq(0,1,length=255)),max = 255) 

 

ColorLevels <- seq(min, max, length=length(kleur)) 

 

# Reverse Y axis 

 reverse <- nrow(x) : 1 

 yLabels <- yLabels[reverse] 

 x <- x[reverse,] 

 

 # Data Map 

 par(mar = c(3,5,2.5,2)) 

 image(1:length(xLabels), 1:length(yLabels), t(x), col=kleur, xlab="", 

 ylab="", axes=FALSE, zlim=c(min,max)) 

 if( !is.null(title) ){ 

    title(main=title) 

 } 

axis(BELOW<-1, at=1:length(xLabels), labels=xLabels, cex.axis=0.7) 

 axis(LEFT <-2, at=1:length(yLabels), labels=yLabels, las= HORIZONTAL<-

1, 

 cex.axis=0.7) 

 

 # Color Scale 

 par(mar = c(3,2.5,2.5,2)) 

 image(1, ColorLevels, 

      matrix(data=ColorLevels, ncol=length(ColorLevels),nrow=1), 

      col=kleur, 

      xlab="",ylab="", 

      xaxt="n") 

 

 layout(1) 

} 

# ----- END plot function ----- # 

 

 

B.6 PERCENTILE CALCULATION AND PLOT SCRIPT 

This code creates the percentile plots: 

 
#read in the data from one month 

gg<-read.csv(file="C:\\Dissertation\\tasmin_east_dec.csv", 

sep=",",header=T) 

 

#sort extract observation and model data from the data file then sort 

#each of their values from smallest to largest 

a1<-sort(gg$Obs) 
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b1<-sort(gg$MM5I_CCSM) 

c1<-sort(gg$RCM3_GFDL) 

d1<-sort(gg$ECP2_GFDL) 

e1<-sort(gg$WRFG_CCSM) 

f1<-sort(gg$WRFG_CGCM3) 

g1<-sort(gg$RCM3_CGCM3) 

h1<-sort(gg$CRCM_CGCM3) 

i1<-sort(gg$CRCM_CCSM) 

k1<-sort(gg$GFDL_TS) 

 

#save the sorted values as new variables 

aa1<-a1 

bb1<-b1 

cc1<-c1 

dd1<-d1 

ee1<-e1 

ff1<-f1 

gg1<-g1 

hh1<-h1 

ii1<-i1 

kk1<-k1 

 

#find the quantile values for observations and model data 

aaa1<-quantile(aa1,c(0.01,0.05,0.1,0.25,0.5,0.75,0.9,0.95,0.99)) 

bbb1<-quantile(bb1,c(0.01,0.05,0.1,0.25,0.5,0.75,0.9,0.95,0.99)) 

ccc1<-quantile(cc1,c(0.01,0.05,0.1,0.25,0.5,0.75,0.9,0.95,0.99)) 

ddd1<-quantile(dd1,c(0.01,0.05,0.1,0.25,0.5,0.75,0.9,0.95,0.99)) 

eee1<-quantile(ee1,c(0.01,0.05,0.1,0.25,0.5,0.75,0.9,0.95,0.99)) 

fff1<-quantile(ff1,c(0.01,0.05,0.1,0.25,0.5,0.75,0.9,0.95,0.99)) 

ggg1<-quantile(gg1,c(0.01,0.05,0.1,0.25,0.5,0.75,0.9,0.95,0.99)) 

hhh1<-quantile(hh1,c(0.01,0.05,0.1,0.25,0.5,0.75,0.9,0.95,0.99)) 

iii1<-quantile(ii1,c(0.01,0.05,0.1,0.25,0.5,0.75,0.9,0.95,0.99)) 

kkk1<-quantile(kk1,c(0.01,0.05,0.1,0.25,0.5,0.75,0.9,0.95,0.99)) 

 

#subtract each of the model’s quantile values from observations to 

#determine the bias at each quantile 

l1<-(bbb1-aaa1) 

m1<-(ccc1-aaa1) 

n1<-(ddd1-aaa1) 

o1<-(eee1-aaa1) 

p1<-(fff1-aaa1) 

q1<-(ggg1-aaa1) 

r1<-(hhh1-aaa1) 

s1<-(iii1-aaa1) 

v1<-(kkk1-aaa1) 

#define some values which will be used to create plots 

tt1<-seq(1,9,by=1) 

ys<-seq(-14,9, by=1) 

 

tt2<-seq(0,10,by=1) 

xs<-rep(0,11) 

 

#open a new, blank window 

windows() 

 

#define where and what the image will be saved as well as dimensions 
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png(filename = "C://Dissertation//percentile_plots_tmin_east_djf.png", 

width = 1250, height = 430,units = "px", pointsize = 15, bg = "white", 

res = 120,restoreConsole = TRUE) 

 

#creates the spacing needed to create a plot of 1x3 sub-figures 

lvec = c(1:3) 

layout(matrix(lvec,nrow=1,byrow=TRUE), 

heights=c(rep(1.5,3)),widths=c(rep(1,3))) 

par(mai=c(0.35,0.3,0.3,0.3)) 

 

#plots the first variable 

plot(tt1,l1,xlim=c(0.5,9.5),axes=FALSE,ylim=c(-10.5,8),col="red", 

pch=49,ylab="Temperature Bias (degrees C)",xlab="Percentiles") 

 

#creates a solid line at 0 degree C bias  

abline(h = ys, v = tt1, col = "gray", lty = "dotted") 

 

#plots the lines and points of the remaining models 

lines(tt2,xs,type="l",col="black", lwd=1) 

lines(tt1,l1,type="l",col="red") 

points(tt1,m1,pch=50,col="blue") 

lines(tt1,m1,type="l",col="blue") 

points(tt1,n1,pch=51,col="green") 

lines(tt1,n1,type="l",col="green") 

points(tt1,o1,pch=52,col="mediumorchid3") 

lines(tt1,o1,type="l",col="mediumorchid3") 

points(tt1,p1,pch=53,col="darkgreen") 

lines(tt1,p1,type="l",col="darkgreen") 

points(tt1,q1,pch=54,col="cyan3") 

lines(tt1,q1,type="l",col="cyan3") 

points(tt1,r1,pch=55,col="black") 

lines(tt1,r1,type="l",col="black") 

points(tt1,s1,pch=56,col="orange") 

lines(tt1,s1,type="l",col="orange") 

#points(tt1,u1,pch="i",col="gray40") 

#lines(tt1,u1,type="l",col="gray40") 

points(tt1,v1,pch=57,col="gray40") 

lines(tt1,v1,type="l",col="gray40") 

text(1,7.25,"a)") 

 

#overwrites the default axis labels 

axis(1,at=1:9,lab=c("1","5","10","25","50","75","90","95","99")) 

axis(2, at=c(-10,-8,-6,-4,-2,0,2,4,6,8),lab=c("-10","-8","-6","-4", 

"-2","0","2","4","6","8")) 

box() 

 

dev.off() 

 

 

 

B.7 HIERARCHICAL CLUSTERING SCRIPT 

library(pvclust) 

library(plyr) 

library(gtools) 
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gg<-read.csv(file="H:\\Dissertation\\tasmin_west_dec.csv", 

sep=",",header=T) 

hh<-read.csv(file="H:\\Dissertation\\tasmin_west_jan.csv", 

sep=",",header=T) 

ii<-read.csv(file="H:\\Dissertation\\tasmin_west_feb.csv", 

sep=",",header=T) 

gg2<-read.csv(file="H:\\Dissertation\\tasmin_west_mar.csv", 

sep=",",header=T) 

hh2<-read.csv(file="H:\\Dissertation\\tasmin_west_apr.csv", 

sep=",",header=T) 

ii2<-read.csv(file="H:\\Dissertation\\tasmin_west_may.csv", 

sep=",",header=T) 

gg3<-read.csv(file="H:\\Dissertation\\tasmin_west_jun.csv", 

sep=",",header=T) 

hh3<-read.csv(file="H:\\Dissertation\\tasmin_west_jul.csv", 

sep=",",header=T) 

ii3<-read.csv(file="H:\\Dissertation\\tasmin_west_aug.csv", 

sep=",",header=T) 

gg4<-read.csv(file="H:\\Dissertation\\tasmin_west_sep.csv", 

sep=",",header=T) 

hh4<-read.csv(file="H:\\Dissertation\\tasmin_west_oct.csv", 

sep=",",header=T) 

ii4<-read.csv(file="H:\\Dissertation\\tasmin_west_nov.csv", 

sep=",",header=T) 

gg5<-read.csv(file="H:\\Dissertation\\tasmin_GCM_west_dec.csv", 

sep=",",header=T) 

hh5<-read.csv(file="H:\\Dissertation\\tasmin_GCM_west_jan.csv", 

sep=",",header=T) 

ii5<-read.csv(file="H:\\Dissertation\\tasmin_GCM_west_feb.csv", 

sep=",",header=T) 

gg6<-read.csv(file="H:\\Dissertation\\tasmin_GCM_west_mar.csv", 

sep=",",header=T) 

hh6<-read.csv(file="H:\\Dissertation\\tasmin_GCM_west_apr.csv", 

sep=",",header=T) 

ii6<-read.csv(file="H:\\Dissertation\\tasmin_GCM_west_may.csv", 

sep=",",header=T) 

gg7<-read.csv(file="H:\\Dissertation\\tasmin_GCM_west_jun.csv", 

sep=",",header=T) 

hh7<-read.csv(file="H:\\Dissertation\\tasmin_GCM_west_jul.csv", 

sep=",",header=T) 

ii7<-read.csv(file="H:\\Dissertation\\tasmin_GCM_west_aug.csv", 

sep=",",header=T) 

gg8<-read.csv(file="H:\\Dissertation\\tasmin_GCM_west_sep.csv", 

sep=",",header=T) 

hh8<-read.csv(file="H:\\Dissertation\\tasmin_GCM_west_oct.csv", 

sep=",",header=T) 

ii8<-read.csv(file="H:\\Dissertation\\tasmin_GCM_west_nov.csv", 

sep=",",header=T) 

 

www<-rbind(gg,hh,ii,gg2,hh2,ii2,gg3,hh3,ii3,gg4,hh4,ii4) 

wwwa<-rbind(gg5,hh5,ii5,gg6,hh6,ii6,gg7,hh7,ii7,gg8,hh8,ii8) 

 

www1<-www$Obs 

www2<-www$MM5I_CCSM 

www3<-www$RCM3_GFDL 

www4<-www$ECP2_GFDL 

www5<-www$WRFG_CCSM 
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www6<-www$WRFG_CGCM3 

www7<-www$RCM3_CGCM3 

www8<-www$CRCM_CGCM3 

www9<-www$CRCM_CCSM 

www11<-www$GFDL_TS 

www12<-wwwa$CCSM 

www13<-wwwa$GFDL 

www14<-wwwa$CGCM3 

 

wwww<-cbind(www1,www2,www3,www4,www5,www6,www7,www8,www9,www11, 

www12,www13,www14) 

 

write.table(wwww,file="H:\\Dissertation\\tasmin_west_all_data.csv",sep=

",", quote=F, col.names=c("Obs","MM5I-CCSM","RCM3-GFDL","ECP2-GFDL", 

"WRFG-CCSM","WRFG-CGCM3","RCM3-CGCM3","CRCM-CGCM3","CRCM-CCSM","GFDL-

TS","CCSM","GFDL","CGCM3")) 

 

wtasmin<-read.csv(file="H:\\Dissertation\\tasmin_west_all_data.csv", 

sep=",",header=T) 

 

fit_wtmin <- pvclust(wtasmin, method.hclust="ward", 

method.dist="euclidean") 

 

windows() 

 

png(filename = "H://Dissertation//tasmin_west_all_data_ward_euc.png", 

width = 1000, height = 800,units = "px", pointsize = 13.5, bg = 

"white", res = 130,restoreConsole = TRUE) 

plot(fit_wtmin) 

 

 

dev.off() 

 

 

 
B.8 BOOTSTRAP AND SIGNIFICANCE TEST SCRIPT 

library(plyr) 

 

present<-

read.csv(file="H:\\Future_model_work\\tmax_CRCM_ccsm_extract_east_30yr_

mon_aves_present.csv",sep=",",header=T) 

future<-

read.csv(file="H:\\Future_model_work\\tmax_CRCM_ccsm_extract_east_30yr_

mon_aves_future.csv",sep=",",header=T) 

model<-read.csv(file="H:\\Future_model_work\\tas_CRCM_ccsm_fut-

ref_max_extract_east.csv",sep=",",header=T) 

 

janf=data.frame(future[c(1,13,25,37,49,61,73,85,97,109,121,133,145,157,

169,181,193,205,217,229,241,253,265,277,289,301,313,325,337,349),]) 

janc=data.frame(present[c(1,13,25,37,49,61,73,85,97,109,121,133,145,157

,169,181,193,205,217,229,241,253,265,277,289,301,313,325,337,349),]) 

janm=model[1,] 

 

jan_meanf=stack(janf) 

jan_meanc=stack(janc) 
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janfu=c(jan_meanf$values) 

jancu=c(jan_meanc$values) 

 

func<- function(x) replicate(10000,sample(x, replace = T)) 

 

sampf<-func(janfu) 

sampc<-func(jancu) 

 

meanf<-colMeans(sampf) 

meanc<-colMeans(sampc) 

 

diff1<-meanf-meanc 

 

sigj1<-quantile(diff1,  probs = 

c(0.001,0.01,0.05,0.1,0.9,0.95,0.99,0.999),na.rm=T) 

mod1<-rowMeans(janm) 

 

test1<-0 

 

test1[mod1<=sigj1[1]]<-0.01 

test1[mod1<=sigj1[2] & mod1>sigj1[1]]<-0.01 

test1[mod1<=sigj1[3] & mod1>sigj1[2]]<-0.05 

test1[mod1<=sigj1[4] & mod1>sigj1[3]]<-0.1 

test1[mod1>=sigj1[5] & mod1<sigj1[6] ]<-0.1 

test1[mod1>=sigj1[6] & mod1<sigj1[7] ]<-0.05 

test1[mod1>=sigj1[7] & mod1<sigj1[8] ]<-0.01 

test1[mod1>=sigj1[8]]<-0.01 

test1[mod1>sigj1[4] & mod1<sigj1[5] ]<-0 

 

rm(present) 

rm(future) 

rm(janf) 

rm(janc) 

rm(janm) 

rm(jan_meanf) 

rm(jan_meanc) 

rm(janfu) 

rm(jancu) 

rm(sampf) 

rm(sampc) 

rm(meanf) 

rm(meanc) 

gc() 

 

present<-

read.csv(file="H:\\Future_model_work\\tmax_CRCM_cgcm3_extract_east_30yr

_mon_aves_present.csv",sep=",",header=T) 

future<-

read.csv(file="H:\\Future_model_work\\tmax_CRCM_cgcm3_extract_east_30yr

_mon_aves_future.csv",sep=",",header=T) 

model<-read.csv(file="H:\\Future_model_work\\tas_CRCM_cgcm3_fut-

ref_max_extract_east.csv",sep=",",header=T) 

 

janf=data.frame(future[c(1,13,25,37,49,61,73,85,97,109,121,133,145,157,

169,181,193,205,217,229,241,253,265,277,289,301,313,325,337,349),]) 
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janc=data.frame(present[c(1,13,25,37,49,61,73,85,97,109,121,133,145,157

,169,181,193,205,217,229,241,253,265,277,289,301,313,325,337,349),]) 

janm=model[1,] 

 

jan_meanf=stack(janf) 

jan_meanc=stack(janc) 

 

janfu=c(jan_meanf$values) 

jancu=c(jan_meanc$values) 

 

func<- function(x) replicate(10000,sample(x, replace = T)) 

 

sampf<-func(janfu) 

sampc<-func(jancu) 

 

meanf<-colMeans(sampf) 

meanc<-colMeans(sampc) 

 

diff2<-meanf-meanc 

 

sigj2<-quantile(diff2,  probs = 

c(0.001,0.01,0.05,0.1,0.9,0.95,0.99,0.999),na.rm=T) 

mod2<-rowMeans(janm) 

 

test2<-0 

 

test2[mod2<=sigj2[1]]<-0.01 

test2[mod2<=sigj2[2] & mod2>sigj2[1]]<-0.01 

test2[mod2<=sigj2[3] & mod2>sigj2[2]]<-0.05 

test2[mod2<=sigj2[4] & mod2>sigj2[3]]<-0.1 

test2[mod2>=sigj2[5] & mod2<sigj2[6] ]<-0.1 

test2[mod2>=sigj2[6] & mod2<sigj2[7] ]<-0.05 

test2[mod2>=sigj2[7] & mod2<sigj2[8] ]<-0.01 

test2[mod2>=sigj2[8]]<-0.01 

test2[mod2>sigj2[4] & mod2<sigj2[5] ]<-0 

 

rm(present) 

rm(future) 

rm(janf) 

rm(janc) 

rm(janm) 

rm(jan_meanf) 

rm(jan_meanc) 

rm(janfu) 

rm(jancu) 

rm(sampf) 

rm(sampc) 

rm(meanf) 

rm(meanc) 

gc() 

 

 

present<-

read.csv(file="H:\\Future_model_work\\tmax_RCM3_cgcm3_extract_east_30yr

_mon_aves_present.csv",sep=",",header=T) 
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future<-

read.csv(file="H:\\Future_model_work\\tmax_RCM3_cgcm3_extract_east_30yr

_mon_aves_future.csv",sep=",",header=T) 

model<-read.csv(file="H:\\Future_model_work\\tas_RCM3_cgcm3_fut-

ref_max_extract_east.csv",sep=",",header=T) 

 

janf=data.frame(future[c(1,13,25,37,49,61,73,85,97,109,121,133,145,157,

169,181,193,205,217,229,241,253,265,277,289,301,313,325,337,349),]) 

janc=data.frame(present[c(1,13,25,37,49,61,73,85,97,109,121,133,145,157

,169,181,193,205,217,229,241,253,265,277,289,301,313,325,337,349),]) 

janm=model[1,] 

 

janf=data.frame(future[c(1,13,25,37,49,61,73,85,97,109,121,133,145,157,

169,181,193,205,217,229,241,253,265,277,289,301,313,325,337,349),]) 

janc=data.frame(present[c(1,13,25,37,49,61,73,85,97,109,121,133,145,157

,169,181,193,205,217,229,241,253,265,277,289,301,313,325,337,349),]) 

janm=model[1,] 

 

jan_meanf=stack(janf) 

jan_meanc=stack(janc) 

 

janfu=c(jan_meanf$values) 

jancu=c(jan_meanc$values) 

 

func<- function(x) replicate(10000,sample(x, replace = T)) 

 

sampf<-func(janfu) 

sampc<-func(jancu) 

 

meanf<-colMeans(sampf) 

meanc<-colMeans(sampc) 

 

 

diff3<-meanf-meanc 

 

sigj3<-quantile(diff3,  probs = 

c(0.001,0.01,0.05,0.1,0.9,0.95,0.99,0.999),na.rm=T) 

mod3<-rowMeans(janm) 

 

test3<-0 

 

test3[mod3<=sigj3[1]]<-0.01 

test3[mod3<=sigj3[2] & mod3>sigj3[1]]<-0.01 

test3[mod3<=sigj3[3] & mod3>sigj3[2]]<-0.05 

test3[mod3<=sigj3[4] & mod3>sigj3[3]]<-0.1 

test3[mod3>=sigj3[5] & mod3<sigj3[6] ]<-0.1 

test3[mod3>=sigj3[6] & mod3<sigj3[7] ]<-0.05 

test3[mod3>=sigj3[7] & mod3<sigj3[8] ]<-0.01 

test3[mod3>=sigj3[8]]<-0.01 

test3[mod3>sigj3[4] & mod3<sigj3[5] ]<-0 

 

rm(present) 

rm(future) 

rm(janf) 

rm(janc) 

rm(janm) 

rm(jan_meanf) 
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rm(jan_meanc) 

rm(janfu) 

rm(jancu) 

rm(sampf) 

rm(sampc) 

rm(meanf) 

rm(meanc) 

gc() 

 

 

present<-

read.csv(file="H:\\Future_model_work\\tmax_RCM3_gfdl_extract_east_30yr_

mon_aves_present.csv",sep=",",header=T) 

future<-

read.csv(file="H:\\Future_model_work\\tmax_RCM3_gfdl_extract_east_30yr_

mon_aves_future.csv",sep=",",header=T) 

model<-read.csv(file="H:\\Future_model_work\\tas_RCM3_gfdl_fut-

ref_max_extract_east.csv",sep=",",header=T) 

 

janf=data.frame(future[c(1,13,25,37,49,61,73,85,97,109,121,133,145,157,

169,181,193,205,217,229,241,253,265,277,289,301,313,325,337,349),]) 

janc=data.frame(present[c(1,13,25,37,49,61,73,85,97,109,121,133,145,157

,169,181,193,205,217,229,241,253,265,277,289,301,313,325,337,349),]) 

janm=model[1,] 

 

jan_meanf=stack(janf) 

jan_meanc=stack(janc) 

 

janfu=c(jan_meanf$values) 

jancu=c(jan_meanc$values) 

 

func<- function(x) replicate(10000,sample(x, replace = T)) 

 

sampf<-func(janfu) 

sampc<-func(jancu) 

 

meanf<-colMeans(sampf) 

meanc<-colMeans(sampc) 

 

diff4<-meanf-meanc 

 

sigj4<-quantile(diff4,  probs = 

c(0.001,0.01,0.05,0.1,0.9,0.95,0.99,0.999),na.rm=T) 

mod4<-rowMeans(janm) 

 

test4<-0 

 

test4[mod4<=sigj4[1]]<-0.01 

test4[mod4<=sigj4[2] & mod4>sigj4[1]]<-0.01 

test4[mod4<=sigj4[3] & mod4>sigj4[2]]<-0.05 

test4[mod4<=sigj4[4] & mod4>sigj4[3]]<-0.1 

test4[mod4>=sigj4[5] & mod4<sigj4[6] ]<-0.1 

test4[mod4>=sigj4[6] & mod4<sigj4[7] ]<-0.05 

test4[mod4>=sigj4[7] & mod4<sigj4[8] ]<-0.01 

test4[mod4>=sigj4[8]]<-0.01 

test4[mod4>sigj4[4] & mod4<sigj4[5] ]<-0 
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rm(present) 

rm(future) 

rm(janf) 

rm(janc) 

rm(janm) 

rm(jan_meanf) 

rm(jan_meanc) 

rm(janfu) 

rm(jancu) 

rm(sampf) 

rm(sampc) 

rm(meanf) 

rm(meanc) 

gc() 

 

 

present<-

read.csv(file="H:\\Future_model_work\\tmax_ECP2_gfdl_extract_east_30yr_

mon_aves_present.csv",sep=",",header=T) 

future<-

read.csv(file="H:\\Future_model_work\\tmax_ECP2_gfdl_extract_east_30yr_

mon_aves_future.csv",sep=",",header=T) 

model<-read.csv(file="H:\\Future_model_work\\tas_ECP2_gfdl_fut-

ref_max_extract_east.csv",sep=",",header=T) 

 

janf=data.frame(future[c(1,13,25,37,49,61,73,85,97,109,121,133,145,157,

169,181,193,205,217,229,241,253,265,277,289,301,313,325,337,349),]) 

janc=data.frame(present[c(1,13,25,37,49,61,73,85,97,109,121,133,145,157

,169,181,193,205,217,229,241,253,265,277,289,301,313,325,337,349),]) 

janm=model[1,] 

 

jan_meanf=stack(janf) 

jan_meanc=stack(janc) 

 

janfu=c(jan_meanf$values) 

jancu=c(jan_meanc$values) 

 

func<- function(x) replicate(10000,sample(x, replace = T)) 

 

sampf<-func(janfu) 

sampc<-func(jancu) 

 

meanf<-colMeans(sampf) 

meanc<-colMeans(sampc) 

 

diff5<-meanf-meanc 

 

sigj5<-quantile(diff5,  probs = 

c(0.001,0.01,0.05,0.1,0.9,0.95,0.99,0.999),na.rm=T) 

mod5<-rowMeans(janm) 

 

test5<-0 

 

test5[mod5<=sigj5[1]]<-0.01 

test5[mod5<=sigj5[2] & mod5>sigj5[1]]<-0.01 

test5[mod5<=sigj5[3] & mod5>sigj5[2]]<-0.05 

test5[mod5<=sigj5[4] & mod5>sigj5[3]]<-0.1 
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test5[mod5>=sigj5[5] & mod5<sigj5[6] ]<-0.1 

test5[mod5>=sigj5[6] & mod5<sigj5[7] ]<-0.05 

test5[mod5>=sigj5[7] & mod5<sigj5[8] ]<-0.01 

test5[mod5>=sigj5[8]]<-0.01 

test5[mod5>sigj5[4] & mod5<sigj5[5] ]<-0 

 

rm(present) 

rm(future) 

rm(janf) 

rm(janc) 

rm(janm) 

rm(jan_meanf) 

rm(jan_meanc) 

rm(janfu) 

rm(jancu) 

rm(sampf) 

rm(sampc) 

rm(meanf) 

rm(meanc) 

gc() 

 

present<-

read.csv(file="H:\\Future_model_work\\tmax_MM5I_ccsm_extract_east_30yr_

mon_aves_present.csv",sep=",",header=T) 

future<-

read.csv(file="H:\\Future_model_work\\tmax_MM5I_ccsm_extract_east_30yr_

mon_aves_future.csv",sep=",",header=T) 

model<-read.csv(file="H:\\Future_model_work\\tas_MM5I_ccsm_fut-

ref_max_extract_east.csv",sep=",",header=T) 

 

janf=data.frame(future[c(1,13,25,37,49,61,73,85,97,109,121,133,145,157,

169,181,193,205,217,229,241,253,265,277,289,301,313,325,337,349),]) 

janc=data.frame(present[c(1,13,25,37,49,61,73,85,97,109,121,133,145,157

,169,181,193,205,217,229,241,253,265,277,289,301,313,325,337,349),]) 

janm=model[1,] 

 

jan_meanf=stack(janf) 

jan_meanc=stack(janc) 

 

janfu=c(jan_meanf$values) 

jancu=c(jan_meanc$values) 

 

func<- function(x) replicate(10000,sample(x, replace = T)) 

 

sampf<-func(janfu) 

sampc<-func(jancu) 

 

meanf<-colMeans(sampf) 

meanc<-colMeans(sampc) 

 

diff6<-meanf-meanc 

 

sigj6<-quantile(diff6,  probs = 

c(0.001,0.01,0.05,0.1,0.9,0.95,0.99,0.999),na.rm=T) 

mod6<-rowMeans(janm) 

 

test6<-0 
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test6[mod6<=sigj6[1]]<-0.01 

test6[mod6<=sigj6[2] & mod6>sigj6[1]]<-0.01 

test6[mod6<=sigj6[3] & mod6>sigj6[2]]<-0.05 

test6[mod6<=sigj6[4] & mod6>sigj6[3]]<-0.1 

test6[mod6>=sigj6[5] & mod6<sigj6[6] ]<-0.1 

test6[mod6>=sigj6[6] & mod6<sigj6[7] ]<-0.05 

test6[mod6>=sigj6[7] & mod6<sigj6[8] ]<-0.01 

test6[mod6>=sigj6[8]]<-0.01 

test6[mod6>sigj6[4] & mod6<sigj6[5] ]<-0 

 

rm(present) 

rm(future) 

rm(janf) 

rm(janc) 

rm(janm) 

rm(jan_meanf) 

rm(jan_meanc) 

rm(janfu) 

rm(jancu) 

rm(sampf) 

rm(sampc) 

rm(meanf) 

rm(meanc) 

gc() 

 

present<-

read.csv(file="H:\\Future_model_work\\tmax_WRFG_ccsm_extract_east_30yr_

mon_aves_present.csv",sep=",",header=T) 

future<-

read.csv(file="H:\\Future_model_work\\tmax_WRFG_ccsm_extract_east_30yr_

mon_aves_future.csv",sep=",",header=T) 

model<-read.csv(file="H:\\Future_model_work\\tas_WRFG_ccsm_fut-

ref_max_extract_east.csv",sep=",",header=T) 

 

janf=data.frame(future[c(1,13,25,37,49,61,73,85,97,109,121,133,145,157,

169,181,193,205,217,229,241,253,265,277,289,301,313,325,337,349),]) 

janc=data.frame(present[c(1,13,25,37,49,61,73,85,97,109,121,133,145,157

,169,181,193,205,217,229,241,253,265,277,289,301,313,325,337,349),]) 

janm=model[1,] 

 

jan_meanf=stack(janf) 

jan_meanc=stack(janc) 

 

janfu=c(jan_meanf$values) 

jancu=c(jan_meanc$values) 

 

func<- function(x) replicate(10000,sample(x, replace = T)) 

 

sampf<-func(janfu) 

sampc<-func(jancu) 

 

meanf<-colMeans(sampf) 

meanc<-colMeans(sampc) 

 

diff7<-meanf-meanc 
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sigj7<-quantile(diff7,  probs = 

c(0.001,0.01,0.05,0.1,0.9,0.95,0.99,0.999),na.rm=T) 

mod7<-rowMeans(janm) 

 

test7<-0 

 

test7[mod7<=sigj7[1]]<-0.01 

test7[mod7<=sigj7[2] & mod7>sigj7[1]]<-0.01 

test7[mod7<=sigj7[3] & mod7>sigj7[2]]<-0.05 

test7[mod7<=sigj7[4] & mod7>sigj7[3]]<-0.1 

test7[mod7>=sigj7[5] & mod7<sigj7[6] ]<-0.1 

test7[mod7>=sigj7[6] & mod7<sigj7[7] ]<-0.05 

test7[mod7>=sigj7[7] & mod7<sigj7[8] ]<-0.01 

test7[mod7>=sigj7[8]]<-0.01 

test7[mod7>sigj7[4] & mod7<sigj7[5] ]<-0 

 

rm(present) 

rm(future) 

rm(janf) 

rm(janc) 

rm(janm) 

rm(jan_meanf) 

rm(jan_meanc) 

rm(janfu) 

rm(jancu) 

rm(sampf) 

rm(sampc) 

rm(meanf) 

rm(meanc) 

gc() 

 

present<-

read.csv(file="H:\\Future_model_work\\tmax_WRFG_cgcm3_extract_east_30yr

_mon_aves_present.csv",sep=",",header=T) 

future<-

read.csv(file="H:\\Future_model_work\\tmax_WRFG_cgcm3_extract_east_30yr

_mon_aves_future.csv",sep=",",header=T) 

model<-read.csv(file="H:\\Future_model_work\\tas_WRFG_cgcm3_fut-

ref_max_extract_east.csv",sep=",",header=T) 

 

janf=data.frame(future[c(1,13,25,37,49,61,73,85,97,109,121,133,145,157,

169,181,193,205,217,229,241,253,265,277,289,301,313,325,337,349),]) 

janc=data.frame(present[c(1,13,25,37,49,61,73,85,97,109,121,133,145,157

,169,181,193,205,217,229,241,253,265,277,289,301,313,325,337,349),]) 

janm=model[1,] 

 

jan_meanf=stack(janf) 

jan_meanc=stack(janc) 

 

janfu=c(jan_meanf$values) 

jancu=c(jan_meanc$values) 

 

func<- function(x) replicate(10000,sample(x, replace = T)) 

 

sampf<-func(janfu) 

sampc<-func(jancu) 
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meanf<-colMeans(sampf) 

meanc<-colMeans(sampc) 

 

diff8<-meanf-meanc 

 

sigj8<-quantile(diff8,  probs = 

c(0.001,0.01,0.05,0.1,0.9,0.95,0.99,0.999),na.rm=T) 

mod8<-rowMeans(janm) 

 

test8<-0 

 

test8[mod8<=sigj8[1]]<-0.01 

test8[mod8<=sigj8[2] & mod8>sigj8[1]]<-0.01 

test8[mod8<=sigj8[3] & mod8>sigj8[2]]<-0.05 

test8[mod8<=sigj8[4] & mod8>sigj8[3]]<-0.1 

test8[mod8>=sigj8[5] & mod8<sigj8[6] ]<-0.1 

test8[mod8>=sigj8[6] & mod8<sigj8[7] ]<-0.05 

test8[mod8>=sigj8[7] & mod8<sigj8[8] ]<-0.01 

test8[mod8>=sigj8[8]]<-0.01 

test8[mod8>sigj8[4] & mod8<sigj8[5] ]<-0 

 

rm(present) 

rm(future) 

rm(janf) 

rm(janc) 

rm(janm) 

rm(jan_meanf) 

rm(jan_meanc) 

rm(janfu) 

rm(jancu) 

rm(sampf) 

rm(sampc) 

rm(meanf) 

rm(meanc) 

gc() 

 

present<-

read.csv(file="H:\\Future_model_work\\tmax_gfdl_extract_east_30yr_mon_a

ves_present.csv",sep=",",header=T) 

future<-

read.csv(file="H:\\Future_model_work\\tmax_gfdl_extract_east_30yr_mon_a

ves_future.csv",sep=",",header=T) 

model<-read.csv(file="H:\\Future_model_work\\tas_GFDL_ts_fut-

ref_max_extract_east.csv",sep=",",header=T) 

 

janf=data.frame(future[c(1,13,25,37,49,61,73,85,97,109,121,133,145,157,

169,181,193,205,217,229,241,253,265,277,289,301,313,325,337,349),]) 

janc=data.frame(present[c(1,13,25,37,49,61,73,85,97,109,121,133,145,157

,169,181,193,205,217,229,241,253,265,277,289,301,313,325,337,349),]) 

janm=model[1,] 

 

jan_meanf=stack(janf) 

jan_meanc=stack(janc) 

 

janfu=c(jan_meanf$values) 

jancu=c(jan_meanc$values) 
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func<- function(x) replicate(10000,sample(x, replace = T)) 

 

sampf<-func(janfu) 

sampc<-func(jancu) 

 

meanf<-colMeans(sampf) 

meanc<-colMeans(sampc) 

 

diff9<-meanf-meanc 

 

sigj9<-quantile(diff9,  probs = 

c(0.001,0.01,0.05,0.1,0.9,0.95,0.99,0.999),na.rm=T) 

mod9<-rowMeans(janm) 

 

test9<-0 

 

test9[mod9<=sigj9[1]]<-0.01 

test9[mod9<=sigj9[2] & mod9>sigj9[1]]<-0.01 

test9[mod9<=sigj9[3] & mod9>sigj9[2]]<-0.05 

test9[mod9<=sigj9[4] & mod9>sigj9[3]]<-0.1 

test9[mod9>=sigj9[5] & mod9<sigj9[6] ]<-0.1 

test9[mod9>=sigj9[6] & mod9<sigj9[7] ]<-0.05 

test9[mod9>=sigj9[7] & mod9<sigj9[8] ]<-0.01 

test9[mod9>=sigj9[8]]<-0.01 

test9[mod9>sigj9[4] & mod9<sigj9[5] ]<-0 

 

tests1<-table(c(test1,test2,test3,test4,test5,test6,test7,test8,test9)) 

 

rm(present) 

rm(future) 

rm(janf) 

rm(janc) 

rm(janm) 

rm(jan_meanf) 

rm(jan_meanc) 

rm(janfu) 

rm(jancu) 

rm(sampf) 

rm(sampc) 

rm(meanf) 

rm(meanc) 

gc() 

 

write.table(tests1,file="H:\\Dissertation\\tmax_east_stat_sig_jan.csv",

sep=",",col.names=F, quote=F,  

row.names=F)
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APPENDIX C – PERKINS SKILL SCORE, WILLMOTT’S INDEX OF AGREEMENT, RMSE, AND MAE TABLES 

Table C.1. East sub-region minimum temperature values of Perkins skill score (SS) and Willmott’s index of agreement (W).  

 

 

MM5I- 

CCSM 
RCM3-GFDL 

ECP2- 

GFDL 

WRFG-

CCSM 

WRFG-

CGCM3 

RCM3-

CGCM3 

CRCM-

CGCM3 

CRCM-

CCSM 

GFDL-

TIMESLICE 

SS W SS W SS W SS W SS W SS W SS W SS W SS W 

Dec 0.88 0.96 0.76 0.64 0.83 0.63 0.87 0.82 0.85 0.88 0.90 0.90 0.87 0.93 0.85 0.90 0.85 0.91 

Jan 0.86 0.85 0.76 0.65 0.79 0.53 0.91 0.87 0.84 0.82 0.90 0.90 0.85 0.88 0.85 0.90 0.85 0.91 

Feb 0.85 0.83 0.77 0.66 0.78 0.50 0.86 0.88 0.86 0.88 0.89 0.88 0.89 0.96 0.85 0.89 0.86 0.90 

Mar 0.87 0.90 0.78 0.63 0.78 0.59 0.87 0.90 0.92 0.97 0.89 0.84 0.91 0.91 0.88 0.88 0.82 0.84 

Apr 0.78 0.81 0.88 0.82 0.88 0.86 0.76 0.74 0.90 0.93 0.94 0.93 0.95 0.99 0.85 0.79 0.89 0.91 

May 0.80 0.85 0.93 0.94 0.93 0.93 0.94 0.95 0.98 0.97 0.93 0.91 0.93 0.92 0.87 0.82 0.87 0.83 

Jun 0.78 0.87 0.82 0.88 0.86 0.74 0.85 0.81 0.81 0.73 0.88 0.90 0.94 0.94 0.85 0.75 0.75 0.51 

Jul 0.77 0.72 0.86 0.90 0.68 0.46 0.66 0.46 0.57 0.26 0.89 0.93 0.96 0.97 0.83 0.56 0.68 0.01 

Aug 0.72 0.61 0.88 0.88 0.68 0.63 0.66 0.59 0.63 0.48 0.93 0.89 0.90 0.85 0.85 0.59 0.72 0.19 

Sept 0.85 0.84 0.88 0.86 0.82 0.80 0.79 0.75 0.79 0.69 0.95 0.97 0.88 0.86 0.93 0.88 0.86 0.77 

Oct 0.84 0.80 0.93 0.96 0.92 0.93 0.92 0.92 0.91 0.93 0.94 0.91 0.90 0.95 0.92 0.93 0.87 0.77 

Nov 0.88 0.90 0.90 0.87 0.91 0.95 0.90 0.88 0.91 0.88 0.94 0.95 0.90 0.92 0.89 0.93 0.88 0.89 
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Table C.2. East sub-region minimum temperature values of mean absolute error (MAE) and root mean square error (RMSE). 

 

 

MM5I- 

CCSM 
RCM3-GFDL 

ECP2- 

GFDL 

WRFG-

CCSM 

WRFG-

CGCM3 

RCM3-

CGCM3 

CRCM-

CGCM3 

CRCM-

CCSM 

GFDL-

TIMESLICE 

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE 

Dec 1.57 1.68 3.55 3.65 2.34 2.49 1.04 1.37 1.62 1.90 0.64 0.74 0.85 1.14 0.89 1.05 1.32 1.50 

Jan 2.08 2.20 4.01 4.14 3.31 3.43 0.71 0.94 1.82 2.12 0.66 0.74 1.00 1.35 1.42 1.85 1.64 1.79 

Feb 1.96 2.09 3.46 3.71 3.61 3.99 0.99 1.35 1.24 1.51 1.34 1.48 0.70 0.92 1.34 1.75 1.61 1.90 

Mar 1.72 1.85 3.08 3.13 3.01 3.25 1.52 1.75 0.74 0.88 1.54 1.60 1.14 1.22 1.29 1.46 2.08 2.33 

Apr 2.79 2.85 1.59 1.66 1.16 1.40 2.88 2.96 1.41 1.43 0.43 0.49 0.26 0.30 1.95 1.97 0.88 0.99 

May 1.88 1.94 0.63 0.68 0.83 0.97 0.52 0.61 0.11 0.14 0.58 0.63 0.78 0.84 1.26 1.28 1.23 1.34 

Jun 1.40 1.44 0.74 0.84 1.42 1.55 0.66 0.74 1.09 1.15 0.43 0.50 0.51 0.53 0.92 0.95 1.88 1.92 

Jul 1.27 1.28 0.55 0.59 2.08 2.15 1.60 1.71 2.34 2.43 0.29 0.33 0.20 0.30 1.05 1.11 1.85 1.98 

Aug 1.51 1.52 0.79 0.94 2.07 2.12 1.61 1.75 2.05 2.12 0.22 0.28 0.43 0.52 1.00 1.04 1.66 1.82 

Sept 0.97 1.03 1.27 1.42 1.57 1.60 1.34 1.47 1.61 1.69 0.28 0.31 1.37 1.62 0.36 0.67 0.89 1.13 

Oct 1.93 2.08 0.60 0.65 0.72 0.78 0.75 0.86 0.79 0.92 0.65 0.69 0.90 1.05 0.61 0.77 1.42 1.57 

Nov 1.90 1.98 1.20 1.28 0.94 1.15 0.82 0.97 1.46 1.60 0.42 0.62 0.70 0.84 0.82 0.89 1.08 1.27 
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Table C.3. West sub-region minimum temperature values of Perkins’ skill score (SS) and Willmott’s index of agreement (W).  

 

 

MM5I- 

CCSM 

RCM3-

GFDL 

ECP2- 

GFDL 

WRFG-

CCSM 

WRFG-

CGCM3 

RCM3-

CGCM3 

CRCM-

CGCM3 

CRCM-

CCSM 

GFDL-

TIMESLICE 

SS W SS W SS W SS W SS W SS W SS W SS W SS W 

Dec 0.93 0.96 0.75 0.64 0.78 0.63 0.85 0.82 0.90 0.88 0.89 0.90 0.89 0.93 0.86 0.90 0.90 0.91 

Jan 0.90 0.85 0.79 0.65 0.75 0.53 0.89 0.87 0.87 0.82 0.89 0.90 0.86 0.88 0.87 0.90 0.91 0.91 

Feb 0.88 0.83 0.78 0.66 0.73 0.50 0.87 0.88 0.90 0.88 0.88 0.88 0.91 0.96 0.86 0.89 0.90 0.90 

Mar 0.91 0.90 0.75 0.63 0.75 0.59 0.90 0.90 0.94 0.97 0.90 0.84 0.92 0.91 0.91 0.88 0.87 0.84 

Apr 0.85 0.81 0.90 0.82 0.90 0.86 0.80 0.74 0.94 0.93 0.96 0.93 0.97 0.99 0.85 0.79 0.90 0.91 

May 0.86 0.85 0.91 0.94 0.93 0.93 0.92 0.95 0.97 0.97 0.94 0.91 0.94 0.92 0.86 0.82 0.88 0.83 

Jun 0.86 0.87 0.83 0.88 0.85 0.74 0.80 0.81 0.78 0.73 0.85 0.90 0.96 0.94 0.81 0.75 0.67 0.51 

Jul 0.82 0.72 0.90 0.90 0.64 0.46 0.55 0.46 0.49 0.26 0.89 0.93 0.96 0.97 0.74 0.56 0.50 0.01 

Aug 0.72 0.61 0.90 0.88 0.71 0.63 0.61 0.59 0.59 0.48 0.89 0.89 0.88 0.85 0.75 0.59 0.53 0.19 

Sept 0.83 0.84 0.91 0.86 0.84 0.80 0.72 0.75 0.76 0.69 0.94 0.97 0.92 0.86 0.89 0.88 0.81 0.77 

Oct 0.84 0.80 0.95 0.96 0.91 0.93 0.90 0.92 0.94 0.93 0.93 0.91 0.94 0.95 0.93 0.93 0.82 0.77 

Nov 0.92 0.90 0.91 0.87 0.93 0.95 0.86 0.88 0.92 0.88 0.93 0.95 0.93 0.92 0.91 0.93 0.89 0.89 
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Table C.4. West sub-region minimum temperature values of mean absolute error (MAE) and root mean square error (RMSE).  

 

 

MM5I- 

CCSM 
RCM3-GFDL 

ECP2- 

GFDL 

WRFG-

CCSM 

WRFG-

CGCM3 

RCM3-

CGCM3 

CRCM-

CGCM3 

CRCM-

CCSM 

GFDL-

TIMESLICE 

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE 

Dec 0.46 0.72 3.79 3.87 3.93 4.08 1.94 2.19 1.23 1.42 1.06 1.22 0.75 1.09 1.02 1.13 0.97 1.13 

Jan 1.59 1.75 3.73 3.81 5.00 5.20 1.36 1.45 1.90 2.19 1.01 1.21 1.32 1.74 1.10 1.53 0.95 1.11 

Feb 1.74 1.82 3.59 3.68 5.17 5.61 1.26 1.45 1.21 1.45 1.28 1.48 0.40 0.56 1.15 1.49 1.09 1.34 

Mar 0.97 1.11 3.60 3.64 3.98 4.16 0.99 1.11 0.31 0.54 1.54 1.56 0.91 0.96 1.16 1.25 1.59 1.84 

Apr 1.77 1.86 1.60 1.61 1.27 1.50 2.36 2.48 0.65 0.69 0.66 0.70 0.13 0.19 1.93 1.98 0.85 0.96 

May 1.11 1.20 0.41 0.61 0.52 0.75 0.39 0.46 0.20 0.33 0.66 0.69 0.58 0.64 1.35 1.39 1.23 1.27 

Jun 0.69 0.77 0.66 0.78 1.37 1.48 0.99 1.09 1.45 1.48 0.51 0.58 0.34 0.37 1.33 1.36 2.60 2.69 

Jul 1.04 1.08 0.36 0.55 2.04 2.10 2.02 2.11 2.80 2.82 0.27 0.36 0.13 0.26 1.67 1.72 3.75 3.99 

Aug 1.63 1.68 0.52 0.67 1.55 1.58 1.72 1.84 2.20 2.23 0.46 0.52 0.65 0.70 1.72 1.77 3.41 3.63 

Sept 1.15 1.26 0.99 1.12 1.47 1.49 1.83 2.01 2.25 2.36 0.20 0.26 1.00 1.17 0.89 1.00 1.64 1.88 

Oct 1.84 1.96 0.35 0.40 0.66 0.75 0.77 1.31 0.67 0.93 0.81 0.83 0.45 0.56 0.65 0.76 2.15 2.31 

Nov 1.05 1.21 1.34 1.40 0.46 0.54 1.16 1.41 1.18 1.30 0.48 0.65 0.76 0.91 0.66 0.71 1.09 1.33 
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Table C.5. East sub-region maximum temperature values of Perkins’ skill score (SS) and Willmott’s index of agreement (W).  

 

 

MM5I- 

CCSM 

RCM3-

GFDL 

ECP2- 

GFDL 

WRFG-

CCSM 

WRFG-

CGCM3 

RCM3-

CGCM3 

CRCM-

CGCM3 

CRCM-

CCSM 

GFDL-

TIMESLICE 

SS W SS W SS W SS W SS W SS W SS W SS W SS W 

Dec 0.86 0.80 0.53 0.20 0.56 0.28 0.76 0.59 0.87 0.78 0.68 0.50 0.79 0.67 0.74 0.60 0.74 0.63 

Jan 0.91 0.88 0.55 0.27 0.51 0.21 0.77 0.65 0.88 0.86 0.74 0.62 0.83 0.76 0.85 0.78 0.70 0.57 

Feb 0.92 0.93 0.57 0.27 0.52 0.16 0.81 0.69 0.81 0.79 0.65 0.49 0.75 0.64 0.85 0.76 0.68 0.50 

Mar 0.93 0.95 0.48 0.18 0.50 0.17 0.80 0.78 0.73 0.70 0.55 0.36 0.67 0.52 0.86 0.82 0.61 0.34 

Apr 0.90 0.90 0.40 0.09 0.47 0.16 0.77 0.77 0.64 0.58 0.48 0.27 0.69 0.53 0.88 0.89 0.65 0.44 

May 0.95 0.91 0.44 0.13 0.47 0.17 0.80 0.75 0.63 0.48 0.48 0.17 0.76 0.66 0.82 0.72 0.73 0.67 

Jun 0.91 0.88 0.43 0.05 0.51 0.20 0.80 0.76 0.62 0.38 0.54 0.28 0.81 0.77 0.71 0.48 0.79 0.78 

Jul 0.87 0.80 0.60 0.39 0.49 0.16 0.78 0.75 0.72 0.54 0.64 0.46 0.69 0.53 0.53 -0.06 0.75 0.73 

Aug 0.80 0.70 0.61 0.39 0.61 0.34 0.78 0.76 0.76 0.67 0.61 0.44 0.68 0.46 0.42 -0.25 0.80 0.77 

Sept 0.96 0.97 0.53 0.25 0.60 0.32 0.79 0.77 0.71 0.63 0.61 0.43 0.76 0.72 0.66 0.39 0.83 0.84 

Oct 0.95 0.90 0.57 0.29 0.66 0.43 0.82 0.73 0.81 0.73 0.70 0.55 0.79 0.67 0.81 0.76 0.89 0.88 

Nov 0.85 0.79 0.58 0.29 0.71 0.51 0.75 0.61 0.80 0.77 0.64 0.49 0.77 0.66 0.69 0.50 0.80 0.67 
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Table C.6. East sub-region maximum temperature values of mean absolute error (MAE) and root mean square error (RMSE).  

 

 

MM5I- 

CCSM 

RCM3-

GFDL 

ECP2- 

GFDL 

WRFG-

CCSM 

WRFG-

CGCM3 

RCM3-

CGCM3 

CRCM-

CGCM3 

CRCM-

CCSM 

GFDL-

TIMESLICE 

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE 

Dec 2.02 2.11 8.03 8.06 7.24 7.28 4.10 4.19 2.17 2.21 5.00 5.01 3.32 3.36 3.97 4.02 3.66 3.87 

Jan 1.21 1.31 7.55 7.59 8.18 8.24 3.62 3.64 1.42 1.65 3.97 4.06 2.44 2.56 2.24 2.29 4.49 4.60 

Feb 0.79 0.91 7.83 7.85 9.00 9.09 3.28 3.31 2.22 2.61 5.48 5.55 3.80 3.88 2.57 2.60 5.34 5.39 

Mar 0.53 0.64 7.87 7.89 7.94 7.95 2.08 2.28 2.90 3.21 6.14 6.20 4.62 4.67 1.69 1.76 6.29 6.33 

Apr 0.78 1.01 7.33 7.36 6.76 6.78 1.89 2.12 3.40 3.61 5.85 5.92 3.76 3.80 0.92 1.05 4.49 4.56 

May 0.58 0.68 5.51 5.54 5.21 5.25 1.57 1.65 3.31 3.35 5.23 5.28 2.16 2.34 1.77 2.40 2.08 2.29 

Jun 0.65 0.69 5.06 5.14 4.30 4.33 1.30 1.46 3.29 3.34 3.87 4.01 1.22 1.49 2.79 3.51 1.20 1.43 

Jul 0.94 1.05 2.93 3.27 4.03 4.06 1.21 1.40 2.19 2.42 2.56 2.98 2.26 2.81 5.07 5.51 1.29 1.71 

Aug 1.44 1.50 2.93 3.22 3.16 3.22 1.16 1.33 1.57 1.78 2.68 2.98 2.58 3.23 6.37 6.66 1.11 1.71 

Sept 0.21 0.34 4.61 4.69 4.20 4.30 1.44 1.56 2.31 2.37 3.50 3.60 1.73 1.95 3.74 4.28 0.98 1.37 

Oct 0.69 0.78 5.05 5.06 4.06 4.09 1.94 1.98 1.94 1.95 3.23 3.27 2.33 2.47 1.75 2.04 0.87 1.10 

Nov 1.89 1.92 6.25 6.26 4.29 4.33 3.48 3.49 2.03 2.19 4.49 4.57 3.01 3.03 4.46 4.53 2.94 3.12 

 

 

 

 

 

 



 

 

 

2
3
7

 

Table C.7. West sub-region maximum temperature values of Perkins’ skill score (SS) and Willmott’s index of agreement (W).  

 

 

MM5I- 

CCSM 

RCM3-

GFDL 

ECP2- 

GFDL 

WRFG-

CCSM 

WRFG-

CGCM3 

RCM3-

CGCM3 

CRCM-

CGCM3 

CRCM-

CCSM 

GFDL-

TIMESLICE 

SS W SS W SS W SS W SS W SS W SS W SS W SS W 

Dec 0.88 0.84 0.55 0.26 0.54 0.22 0.76 0.58 0.90 0.84 0.71 0.57 0.82 0.73 0.74 0.62 0.78 0.69 

Jan 0.92 0.93 0.59 0.38 0.52 0.22 0.78 0.66 0.86 0.88 0.77 0.74 0.85 0.85 0.86 0.82 0.79 0.70 

Feb 0.93 0.94 0.60 0.36 0.52 0.14 0.82 0.71 0.78 0.82 0.66 0.59 0.76 0.72 0.86 0.82 0.73 0.60 

Mar 0.93 0.93 0.50 0.26 0.50 0.19 0.80 0.80 0.75 0.75 0.61 0.50 0.70 0.61 0.86 0.87 0.64 0.42 

Apr 0.90 0.86 0.46 0.19 0.53 0.26 0.74 0.76 0.68 0.65 0.54 0.38 0.70 0.60 0.90 0.92 0.67 0.47 

May 0.86 0.79 0.49 0.21 0.56 0.32 0.82 0.76 0.63 0.49 0.56 0.30 0.82 0.75 0.75 0.62 0.77 0.71 

Jun 0.79 0.70 0.48 0.10 0.58 0.27 0.74 0.62 0.51 0.16 0.57 0.28 0.84 0.79 0.56 0.06 0.73 0.55 

Jul 0.58 0.27 0.62 0.44 0.60 0.33 0.81 0.78 0.65 0.36 0.63 0.46 0.59 0.23 0.40 -0.42 0.58 0.03 

Aug 0.50 0.05 0.63 0.44 0.68 0.43 0.79 0.73 0.82 0.71 0.63 0.44 0.57 0.09 0.40 -0.45 0.57 -0.07 

Sept 0.76 0.64 0.52 0.28 0.66 0.43 0.90 0.92 0.80 0.74 0.63 0.48 0.81 0.79 0.59 0.25 0.70 0.49 

Oct 0.90 0.90 0.58 0.34 0.68 0.48 0.88 0.80 0.87 0.82 0.72 0.59 0.82 0.77 0.78 0.71 0.82 0.76 

Nov 0.89 0.87 0.59 0.40 0.70 0.53 0.79 0.66 0.83 0.85 0.65 0.60 0.81 0.79 0.71 0.56 0.86 0.79 
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Table C.8. West sub-region maximum temperature values of mean absolute error (MAE) and root mean square error (RMSE). 

 

 

MM5I- 

CCSM 
RCM3-GFDL 

ECP2- 

GFDL 

WRFG-

CCSM 

WRFG-

CGCM3 

RCM3-

CGCM3 

CRCM-

CGCM3 

CRCM-

CCSM 

GFDL-

TIMESLICE 

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE 

Dec 1.74 1.84 7.81 7.83 8.18 8.23 4.46 4.54 1.69 1.79 4.54 4.63 2.87 2.93 4.04 4.12 3.27 3.42 

Jan 0.78 0.96 6.95 7.01 8.82 8.88 3.80 3.83 1.31 1.62 2.91 3.36 1.72 1.97 2.08 2.22 3.40 3.42 

Feb 0.71 0.85 7.30 7.33 9.78 9.86 3.26 3.27 2.04 2.39 4.61 4.85 3.14 3.37 2.03 2.15 4.52 4.55 

Mar 0.67 0.83 7.45 7.48 8.16 8.17 1.98 2.19 2.46 2.76 5.06 5.16 3.87 3.97 1.27 1.43 5.79 5.80 

Apr 1.09 1.39 6.41 6.44 5.85 5.88 1.87 2.09 2.77 2.98 4.93 5.02 3.20 3.25 0.64 0.82 4.22 4.25 

May 1.26 1.27 4.76 4.79 4.11 4.14 1.45 1.53 3.12 3.16 4.24 4.37 1.53 1.67 2.33 2.71 1.77 2.01 

Jun 1.46 1.57 4.40 4.55 3.55 3.62 1.84 2.04 4.06 4.10 3.51 3.70 1.02 1.37 4.55 5.00 2.20 3.07 

Jul 3.16 3.26 2.40 2.73 2.89 2.99 0.95 1.19 2.78 2.95 2.33 2.78 3.33 3.72 7.41 7.62 4.16 4.90 

Aug 4.13 4.22 2.46 2.83 2.47 2.60 1.19 1.38 1.28 1.51 2.43 2.81 3.97 4.37 7.88 8.03 4.70 5.17 

Sept 2.26 2.34 4.59 4.67 3.60 3.72 0.50 0.74 1.67 1.72 3.29 3.41 1.31 1.76 4.78 5.14 3.22 3.50 

Oct 0.73 0.84 4.90 4.91 3.86 3.94 1.48 1.75 1.32 1.34 3.03 3.05 1.72 2.03 2.12 2.56 1.75 2.11 

Nov 1.22 1.28 5.78 5.83 4.57 4.60 3.27 3.28 1.41 1.67 3.84 4.09 2.06 2.20 4.27 4.33 1.99 2.17 
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Table C.9. East sub-region mean precipitation values of Perkins’ skill score (SS) and Willmott’s index of agreement (W).  

 

 

MM5I- 

CCSM 

RCM3-

GFDL 

ECP2- 

GFDL 

WRFG-

CCSM 

WRFG-

CGCM3 

RCM3-

CGCM3 

CRCM-

CGCM3 

CRCM-

CCSM 

GFDL-

TIMESLICE 

SS W SS W SS W SS W SS W SS W SS W SS W SS W 

Dec 0.84 0.87 0.84 0.78 0.81 0.76 0.85 0.83 0.83 0.80 0.88 0.87 0.95 0.96 0.94 0.98 0.90 0.87 

Jan 0.87 0.88 0.91 0.92 0.88 0.90 0.87 0.86 0.88 0.87 0.88 0.90 0.91 0.90 0.86 0.86 0.88 0.85 

Feb 0.95 0.86 0.91 0.94 0.92 0.93 0.87 0.85 0.86 0.87 0.89 0.91 0.96 0.98 0.85 0.85 0.90 0.91 

Mar 0.95 0.86 0.92 0.95 0.90 0.91 0.86 0.84 0.89 0.88 0.91 0.93 0.91 0.94 0.85 0.84 0.88 0.91 

Apr 0.95 0.96 0.95 0.84 0.87 0.81 0.84 0.87 0.89 0.83 0.95 0.84 0.97 0.88 0.89 0.91 0.89 0.92 

May 0.93 0.97 0.89 0.93 0.90 0.91 0.86 0.81 0.87 0.86 0.93 0.82 0.97 0.94 0.88 0.88 0.89 0.88 

Jun 0.93 0.91 0.88 0.89 0.89 0.94 0.89 0.80 0.86 0.81 0.90 0.93 0.90 0.93 0.87 0.89 0.95 0.91 

Jul 0.93 0.94 0.92 0.91 0.94 0.92 0.85 0.76 0.86 0.73 0.92 0.90 0.87 0.90 0.87 0.87 0.93 0.89 

Aug 0.94 0.98 0.91 0.88 0.93 0.77 0.84 0.78 0.86 0.76 0.90 0.89 0.83 0.87 0.83 0.81 0.92 0.89 

Sept 0.92 0.93 0.83 0.85 0.86 0.87 0.79 0.78 0.81 0.81 0.82 0.85 0.83 0.86 0.75 0.76 0.92 0.84 

Oct 0.93 0.98 0.80 0.90 0.90 0.97 0.86 0.90 0.88 0.87 0.82 0.85 0.78 0.83 0.78 0.83 0.89 0.85 

Nov 0.86 0.89 0.93 0.94 0.91 0.83 0.87 0.86 0.89 0.87 0.89 0.94 0.84 0.87 0.89 0.93 0.92 0.88 
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Table C.10. East sub-region mean precipitation values of mean absolute error (MAE) and root mean square error (RMSE).  

 

 

MM5I- 

CCSM 
RCM3-GFDL 

ECP2- 

GFDL 

WRFG-

CCSM 

WRFG-

CGCM3 

RCM3-

CGCM3 

CRCM-

CGCM3 

CRCM-

CCSM 

GFDL-

TIMESLICE 

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE 

Dec 10.07 14.15 4.40 8.84 7.53 12.26 10.21 15.63 10.75 18.01 5.19 10.01 5.12 9.39 3.77 8.50 8.98 14.75 

Jan 9.48 13.17 7.99 13.23 9.49 14.25 10.04 14.98 10.41 15.16 9.25 14.12 2.69 8.61 4.22 10.11 10.16 15.95 

Feb 8.96 12.52 5.76 11.91 9.12 14.61 9.80 15.34 11.73 17.39 8.65 14.36 3.82 9.47 4.10 10.30 8.58 15.15 

Mar 9.54 13.93 6.18 12.52 10.05 15.88 9.77 15.43 11.34 18.15 7.65 14.24 4.72 10.12 4.39 11.35 9.36 16.32 

Apr 7.32 12.73 8.02 14.87 4.40 11.67 8.67 15.14 5.33 12.05 7.88 14.47 7.84 12.13 6.38 10.48 5.26 12.51 

May 4.14 9.17 6.01 10.77 7.49 12.75 7.05 11.33 8.50 15.22 7.21 15.12 5.20 9.95 2.33 5.84 5.08 12.52 

Jun 3.70 10.64 6.73 12.96 5.20 10.37 6.97 11.06 8.35 14.51 6.14 12.58 3.72 8.58 3.93 8.06 6.28 15.95 

Jul 3.14 8.52 4.53 13.34 5.90 10.80 6.46 10.82 8.14 15.17 3.98 11.50 2.25 8.08 2.60 8.36 6.01 16.15 

Aug 2.42 8.94 5.05 13.60 7.02 11.03 7.59 13.47 7.70 15.54 3.36 11.00 2.82 6.53 3.83 10.54 2.97 14.96 

Sept 3.39 12.39 5.10 13.85 7.35 15.73 7.49 12.90 10.80 20.90 5.84 15.17 5.92 12.64 5.92 13.84 9.71 19.80 

Oct 8.65 16.78 3.84 8.29 8.16 16.29 11.15 21.33 12.93 22.44 7.94 16.72 6.11 11.51 6.64 12.07 11.02 20.01 

Nov 10.37 15.49 3.45 10.83 5.85 15.31 10.09 16.79 9.67 17.08 3.53 9.73 4.60 8.77 6.99 10.96 9.79 16.22 
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Table C.11. West sub-region mean precipitation values of Perkins’ skill score (SS) and Willmott’s index of agreement (W).  

 

 

MM5I- 

CCSM 

RCM3-

GFDL 

ECP2- 

GFDL 

WRFG-

CCSM 

WRFG-

CGCM3 

RCM3-

CGCM3 

CRCM-

CGCM3 

CRCM-

CCSM 

GFDL-

TIMESLICE 

SS W SS W SS W SS W SS W SS W SS W SS W SS W 

Dec 0.89 0.91 0.90 0.96 0.91 0.94 0.89 0.88 0.85 0.86 0.90 0.95 0.92 0.93 0.88 0.88 0.92 0.92 

Jan 0.89 0.86 0.90 0.92 0.90 0.93 0.87 0.87 0.87 0.87 0.89 0.92 0.93 0.91 0.85 0.87 0.87 0.88 

Feb 0.95 0.83 0.91 0.94 0.93 0.93 0.87 0.85 0.90 0.88 0.93 0.93 0.93 0.93 0.83 0.83 0.88 0.91 

Mar 0.97 0.82 0.94 0.90 0.92 0.94 0.86 0.83 0.92 0.89 0.92 0.92 0.91 0.91 0.84 0.82 0.90 0.93 

Apr 0.96 0.93 0.94 0.93 0.88 0.85 0.79 0.88 0.89 0.90 0.94 0.90 0.95 0.90 0.86 0.88 0.86 0.92 

May 0.94 0.87 0.85 0.91 0.94 0.95 0.76 0.78 0.82 0.87 0.91 0.83 0.94 0.94 0.81 0.82 0.80 0.84 

Jun 0.97 0.91 0.86 0.87 0.90 0.94 0.78 0.76 0.74 0.80 0.88 0.89 0.93 0.95 0.85 0.82 0.87 0.87 

Jul 0.94 0.88 0.92 0.90 0.94 0.87 0.82 0.69 0.79 0.70 0.88 0.90 0.86 0.82 0.83 0.76 0.82 0.81 

Aug 0.94 0.91 0.92 0.96 0.96 0.80 0.83 0.77 0.85 0.75 0.89 0.93 0.84 0.85 0.83 0.81 0.86 0.82 

Sept 0.91 0.93 0.88 0.92 0.84 0.80 0.82 0.77 0.82 0.78 0.86 0.88 0.81 0.83 0.75 0.77 0.88 0.78 

Oct 0.95 0.96 0.81 0.88 0.87 0.93 0.86 0.87 0.85 0.83 0.81 0.84 0.79 0.83 0.82 0.84 0.87 0.82 

Nov 0.91 0.90 0.91 0.94 0.91 0.93 0.85 0.86 0.85 0.86 0.91 0.91 0.87 0.86 0.88 0.89 0.93 0.88 
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Table C.12. West sub-region mean precipitation values of mean absolute error (MAE) and root mean square error (RMSE).  

 

 

MM5I- 

CCSM 

RCM3-

GFDL 

ECP2- 

GFDL 
WRFG-CCSM 

WRFG-

CGCM3 

RCM3-

CGCM3 

CRCM-

CGCM3 

CRCM-

CCSM 

GFDL-

TIMESLICE 

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE 

Dec 11.07 16.02 6.75 14.37 7.98 15.01 11.33 18.15 13.33 21.73 7.95 15.18 5.06 10.65 3.17 10.39 10.43 17.39 

Jan 9.08 13.05 8.95 14.75 9.90 15.16 10.64 16.11 11.77 17.74 9.62 15.21 2.18 8.63 4.21 11.14 9.98 16.25 

Feb 9.56 13.50 6.54 13.90 8.70 14.95 10.61 16.74 12.39 19.45 8.03 14.86 5.55 10.97 4.65 11.42 7.83 15.46 

Mar 10.41 15.60 7.53 15.65 10.64 17.41 10.98 17.91 12.34 20.21 8.76 16.95 4.56 10.05 5.18 13.55 9.71 17.71 

Apr 9.79 16.72 8.83 17.34 5.05 10.23 9.75 18.54 8.40 17.86 7.42 17.37 9.39 14.81 7.78 13.08 4.41 12.76 

May 7.55 13.71 8.28 14.52 7.35 14.30 8.87 14.37 8.82 18.37 9.37 20.58 6.18 11.88 4.35 10.66 5.80 13.75 

Jun 6.45 11.66 7.51 15.03 4.76 10.13 6.17 10.98 9.11 16.30 7.57 15.69 1.42 6.83 3.89 10.07 3.22 10.33 

Jul 5.46 10.86 6.61 14.07 7.10 11.20 7.13 12.15 7.65 13.15 3.67 12.17 5.87 10.45 5.53 10.32 4.94 12.42 

Aug 2.95 9.04 2.09 9.10 6.37 9.60 6.13 10.56 7.92 15.32 3.73 9.79 3.01 8.78 3.66 9.31 5.02 13.54 

Sept 2.00 8.86 2.16 5.76 8.07 14.06 8.97 16.29 12.12 25.39 4.42 13.44 4.44 11.86 5.69 12.97 7.90 14.72 

Oct 9.60 16.37 6.87 14.96 6.77 15.05 12.08 20.49 8.27 16.49 8.53 15.64 6.16 13.86 4.58 11.36 9.65 16.95 

Nov 11.59 16.37 7.74 14.80 4.72 11.49 12.38 19.35 12.61 19.60 7.83 14.68 4.33 11.44 5.40 9.83 10.99 16.71 
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APPENDIX D – GRADS SCRIPTS 

 
 The following codes were used to create the plots showing future change in 

temperature and precipitation for the Southeast U.S. The first code is used to call in the 

control files (.ctl) created for each netCDF file which allows GrADS to read the data 

contained within the netCDF file. An example control file (.ctl) is provided first with a 

example GrADS script which plots the unweighted ensemble mean and standard 

deviation for all months and saves it as a PNG file. 

#This code is saved as tas_ens_mean_fut-ref_min.ctl 

DSET ^tas_ens_mean_fut-ref_min.nc 

DTYPE netcdf 

TITLE Temperature change for NARCCAP Ensemble 

UNDEF 1.e+20 _FillValue 

XDEF lon  43 LINEAR -94 0.5 

YDEF lat  21 LINEAR 28 0.5 

TDEF time  12 LINEAR 1JAN2069 1MO 

VARS 1 

tas=>tas 1 99 tas 

ENDVARS    

 

#This code is saves as tas_min_ensemble.gs 

********* Grads script for plotting 12 figures in one plot ************ 

 

'reinit' 

'xdfopen H:/Future_model_work/tas_ens_mean_fut-ref_min.ctl' 

'xdfopen H:/Future_model_work/tas_ens_sd_fut-ref_min.ctl' 

 

 

'set mproj scaled' 

'set map 1 1 9' 

'set rgb 16 0 0 155' 

'set rgb 17 0 19 255' 

'set rgb 18 60 130 255' 

'set rgb 19 130 190 255' 

'set rgb 20 150 255 255' 

'set rgb 21 255 246 200' 

'set rgb 22 255 225 100' 

'set rgb 23 255 205 0' 

'set rgb 24 255 180 0' 

'set rgb 25 255 145 0' 

'set rgb 26 255 100 0' 
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'set rgb 27 255 50 0' 

'set rgb 28 236 0 0' 

'set rgb 29 199 0 0' 

'set rgb 30 159 34 34' 

 

 

 

***************** 

'set vpage 0 11 0 8' 

'set parea 0.7 3.7 6.1 8.0' 

'set gxout shaded' 

'set mpdset hires' 

'set mproj scaled' 

'set lon -92 -75' 

'set lat 28.9 37' 

'set grid off' 

'set xlab off' 

'set ylab on' 

'set xlopts 1 4 0.18' 

'set ylopts 1 4 0.18' 

'set xlint 2' 

'set clevs -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 5' 

'set ccols 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30' 

'set t 1' 

'set xlab off' 

'set ylab on' 

'set ylint 2' 

'set digsiz 3' 

'set grads off' 

'd tas.1' 

'set gxout contour' 

'set clevs 0 0.25 0.5 0.75 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6' 

'set clab on' 

#'set clskip 2' 

'set cthick 2' 

'set cterp on' 

'd tas.2' 

'set string 1 c 15 0' 

'set strsiz 0.2' 

'draw string 3.4 6.3 a)' 

*********** 

 

'set vpage 0 11 0 8' 

'set parea 3.7 6.7 6.1 8.0' 

'set gxout shaded' 

'set mpdset hires' 

'set mproj scaled' 

'set lon -92 -75' 

'set lat 28.9 37' 

'set grid off' 

'set xlab off' 

'set ylab off' 

'set xlopts 1 4 0.18' 

'set ylopts 1 4 0.18' 

'set xlint 2' 

'set clevs -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 5' 

'set ccols 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30' 
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'set t 2' 

'set gxout shaded' 

'set grads off' 

'set xlab off' 

'set ylab off' 

'set ylint 2' 

'set digsiz 3' 

'set grads off' 

'd tas.1' 

'set gxout contour' 

'set clevs 0 0.25 0.5 0.75 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6' 

'set clab on' 

#'set clskip 2' 

'set cthick 2' 

'set cterp on' 

'd tas.2' 

'set string 1 c 15 0' 

'set strsiz 0.2' 

'draw string 6.4 6.3 b)' 

*********** 

 

'set vpage 0 11 0 8' 

'set parea 6.7 9.7 6.1 8.0' 

'set gxout shaded' 

'set mpdset hires' 

'set mproj scaled' 

'set lon -92 -75' 

'set lat 28.9 37' 

'set grid off' 

'set xlab off' 

'set ylab off' 

'set xlopts 1 4 0.18' 

'set ylopts 1 4 0.18' 

'set xlint 2' 

'set clevs -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 5' 

'set ccols 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30' 

'set t 3' 

'set gxout shaded' 

'set grads off' 

'set xlab off' 

'set ylab off' 

'set ylint 2' 

'set digsiz 3' 

'set grads off' 

'd tas.1' 

'set gxout contour' 

'set clevs 0 0.25 0.5 0.75 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6' 

'set clab on' 

#'set clskip 2' 

'set cthick 2' 

'set cterp on' 

'd tas.2' 

'set string 1 c 15 0' 

'set strsiz 0.2' 

'draw string 9.4 6.3 c)' 

*********** 
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'set vpage 0 11 0 8' 

'set parea 0.7 3.7 4.2 6.1' 

'set gxout shaded' 

'set mpdset hires' 

'set mproj scaled' 

'set lon -92 -75' 

'set lat 28.9 37' 

'set grid off' 

'set xlab off' 

'set ylab on' 

'set xlopts 1 4 0.18' 

'set ylopts 1 4 0.18' 

'set xlint 2' 

'set clevs -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 5' 

'set ccols 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30' 

'set t 4' 

'set gxout shaded' 

'set grads off' 

'set xlab off' 

'set ylab on' 

'set ylint 2' 

'set digsiz 3' 

'set grads off' 

'd tas.1' 

'set gxout contour' 

'set clevs 0 0.25 0.5 0.75 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6' 

'set clab on' 

#'set clskip 2' 

'set cthick 2' 

'set cterp on' 

'd tas.2' 

'set string 1 c 15 0' 

'set strsiz 0.2' 

'draw string 3.4 4.4 d)' 

*********** 

 

'set vpage 0 11 0 8' 

'set parea 3.7 6.7 4.2 6.1' 

'set gxout shaded' 

'set mpdset hires' 

'set mproj scaled' 

'set lon -92 -75' 

'set lat 28.9 37' 

'set grid off' 

'set xlab off' 

'set ylab off' 

'set xlopts 1 4 0.18' 

'set ylopts 1 4 0.18' 

'set xlint 2' 

'set clevs -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 5' 

'set ccols 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30' 

'set t 5' 

'set gxout shaded' 

'set grads off' 

'set xlab off' 

'set ylab off' 

'set ylint 2' 
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'set digsiz 3' 

'set grads off' 

'd tas.1' 

'set gxout contour' 

'set clevs 0 0.25 0.5 0.75 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6' 

'set clab on' 

#'set clskip 2' 

'set cthick 2' 

'set cterp on' 

'd tas.2' 

'set string 1 c 15 0' 

'set strsiz 0.2' 

'draw string 6.4 4.4 e)' 

*********** 

 

'set vpage 0 11 0 8' 

'set parea 6.7 9.7 4.2 6.1' 

'set gxout shaded' 

'set mpdset hires' 

'set mproj scaled' 

'set lon -92 -75' 

'set lat 28.9 37' 

'set grid off' 

'set xlab off' 

'set ylab off' 

'set xlopts 1 4 0.18' 

'set ylopts 1 4 0.18' 

'set xlint 2' 

'set clevs -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 5' 

'set ccols 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30' 

'set t 6' 

'set gxout shaded' 

'set grads off' 

'set xlab off' 

'set ylab off' 

'set ylint 2' 

'set digsiz 3' 

'set grads off' 

'd tas.1' 

'set gxout contour' 

'set clevs 0 0.25 0.5 0.75 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6' 

'set clab on' 

#'set clskip 2' 

'set cthick 2' 

'set cterp on' 

'd tas.2' 

'set string 1 c 15 0' 

'set strsiz 0.2' 

'draw string 9.4 4.4 f)' 

*********** 

 

'set vpage 0 11 0 8' 

'set parea 0.7 3.7 2.3 4.2' 

'set gxout shaded' 

'set mpdset hires' 

'set mproj scaled' 

'set lon -92 -75' 
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'set lat 28.9 37' 

'set grid off' 

'set xlab on' 

'set ylab on' 

'set xlopts 1 4 0.18' 

'set ylopts 1 4 0.18' 

'set xlint 6' 

'set clevs -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 5' 

'set ccols 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30' 

'set t 7' 

'set gxout shaded' 

'set grads off' 

'set xlab on' 

'set ylab on' 

'set ylint 2' 

'set digsiz 3' 

'set grads off' 

'd tas.1' 

'set gxout contour' 

'set clevs 0 0.25 0.5 0.75 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6' 

'set clab on' 

#'set clskip 2' 

'set cthick 2' 

'set cterp on' 

'd tas.2' 

'set string 1 c 15 0' 

'set strsiz 0.2' 

'draw string 3.4 2.5 g)' 

*********** 

 

'set vpage 0 11 0 8' 

'set parea 3.7 6.7 2.3 4.2' 

'set gxout shaded' 

'set mpdset hires' 

'set mproj scaled' 

'set lon -92 -75' 

'set lat 28.9 37' 

'set grid off' 

'set xlab on' 

'set ylab off' 

'set xlopts 1 4 0.18' 

'set ylopts 1 4 0.18' 

'set xlint 6' 

'set clevs -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 5' 

'set ccols 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30' 

'set t 8' 

'set gxout shaded' 

'set grads off' 

'set xlab on' 

'set ylab off' 

'set ylint 2' 

'set digsiz 3' 

'set grads off' 

'd tas.1' 

'set gxout contour' 

'set clevs 0 0.25 0.5 0.75 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6' 

'set clab on' 
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#'set clskip 2' 

'set cthick 2' 

'set cterp on' 

'd tas.2' 

'set string 1 c 15 0' 

'set strsiz 0.2' 

'draw string 6.4 2.5 h)' 

*********** 

 

'set vpage 0 11 0 8' 

'set parea 6.7 9.7 2.3 4.2' 

'set gxout shaded' 

'set mpdset hires' 

'set mproj scaled' 

'set lon -92 -75' 

'set lat 28.9 37' 

'set grid off' 

'set xlab on' 

'set ylab off' 

'set xlopts 1 4 0.18' 

'set ylopts 1 4 0.18' 

'set xlint 6' 

'set clevs -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 5' 

'set ccols 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30' 

'set t 9' 

'set gxout shaded' 

'set grads off' 

'set xlab on' 

'set ylab off' 

'set ylint 2' 

'set digsiz 3' 

'set grads off' 

'd tas.1' 

'set gxout contour' 

'set clevs 0 0.25 0.5 0.75 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6' 

'set clab on' 

#'set clskip 2' 

'set cthick 2' 

'set cterp on' 

'd tas.2' 

'set string 1 c 15 0' 

'set strsiz 0.2' 

'draw string 9.4 2.5 i)' 

 

'run cbarn 1 1 10.1 3.9 7.2' 

'set string 1 c 4 1' 

'set strsiz 0.17' 

'draw string 10.4 7.1 `3.`0C' 

 

*********** 

 

'set vpage 0 11 0 8' 

'set parea 0.7 3.7 0.4 2.3' 

'set gxout shaded' 

'set mpdset hires' 

'set mproj scaled' 

'set lon -92 -75' 
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'set lat 28.9 37' 

'set grid off' 

'set xlab on' 

'set ylab on' 

'set xlopts 1 4 0.18' 

'set ylopts 1 4 0.18' 

'set xlint 6' 

'set clevs -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 5' 

'set ccols 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30' 

'set t 10' 

'set gxout shaded' 

'set grads off' 

'set xlab on' 

'set ylab on' 

'set ylint 2' 

'set digsiz 3' 

'set grads off' 

'd tas.1' 

'set gxout contour' 

'set clevs 0 0.25 0.5 0.75 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6' 

'set clab on' 

#'set clskip 2' 

'set cthick 2' 

'set cterp on' 

'd tas.2' 

'set string 1 c 15 0' 

'set strsiz 0.2' 

'draw string 3.4 0.6 j)' 

 

 

'set vpage 0 11 0 8' 

'set parea 3.7 6.7 0.4 2.3' 

'set gxout shaded' 

'set mpdset hires' 

'set mproj scaled' 

'set lon -92 -75' 

'set lat 28.9 37' 

'set grid off' 

'set xlab on' 

'set ylab off' 

'set xlopts 1 4 0.18' 

'set ylopts 1 4 0.18' 

'set xlint 6' 

'set clevs -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 5' 

'set ccols 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30' 

'set t 11' 

'set gxout shaded' 

'set grads off' 

'set xlab on' 

'set ylab off' 

'set ylint 2' 

'set digsiz 3' 

'set grads off' 

'd tas.1' 

'set gxout contour' 

'set clevs 0 0.25 0.5 0.75 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6' 

'set clab on' 
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#'set clskip 2' 

'set cthick 2' 

'set cterp on' 

'd tas.2' 

'set string 1 c 15 0' 

'set strsiz 0.2' 

'draw string 6.4 0.6 k)' 

 

 

'set vpage 0 11 0 8' 

'set parea 6.7 9.7 0.4 2.3' 

'set gxout shaded' 

'set mpdset hires' 

'set mproj scaled' 

'set lon -92 -75' 

'set lat 28.9 37' 

'set grid off' 

'set xlab on' 

'set ylab off' 

'set xlopts 1 4 0.18' 

'set ylopts 1 4 0.18' 

'set xlint 6' 

'set clevs -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 5' 

'set ccols 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30' 

'set t 12' 

'set gxout shaded' 

'set grads off' 

'set xlab on' 

'set ylab off' 

'set ylint 2' 

'set digsiz 3' 

'set grads off' 

'd tas.1' 

'set gxout contour' 

'set clevs 0 0.25 0.5 0.75 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6' 

'set clab on' 

#'set clskip 2' 

'set cthick 2' 

'set cterp on' 

'd tas.2' 

'set string 1 c 15 0' 

'set strsiz 0.2' 

'draw string 9.4 0.6 l)' 

 

'printim H:/Future_model_work/tas_ens_min.png white' 
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APPENDIX E – RMSE VERSUS NORMALIZED RMSE 

 
 Presented in Appendix E is the comparison of raw RMSE values computed for 

each minimum temperature, maximum temperature, and mean precipitation for the east 

and west sub-regions. This Appendix is meant to show the relationship between the raw 

RMSE and normalized RMSE values has a correlation of one, indicating normalizing 

RMSE with Kramer’s “normalized.vector” operator does not adversely impact the 

representation of RMSE. Also presented in this Appendix is the R script used to calculate 

normalized RMSE and create the plots illustrated below. 

 
 

Figure E.1. Comparison of minimum temperature RMSE and normalized RMSE for the 

west (a) and east (b) sub-regions.

a) b) 
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Figure E.2. Comparison of maximum temperature RMSE and normalized RMSE for the 

west (a) and east (b) sub-regions. 

 
Figure E.3. Comparison of mean preciptiation RMSE and normalized RMSE for the west 

(a) and east (b) sub-regions. 

a) b) 

a) b) 
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library(ppls) 

 

gg<-read.csv(file="H:\\Dissertation\\tasmax_west_rmse_all_models.csv", 

sep=",",header=T) 

 

ii<-read.csv(file="H:\\Dissertation\\tasmax_east_rmse_all_models.csv", 

sep=",",header=T) 

 

data_raw_west<-c(gg$MM5I_CCSM,gg$RCM3_GFDL,gg$ECP2_GFDL,gg$WRFG_CCSM, 

gg$WRFG_CGCM3,gg$RCM3_CGCM3,gg$CRCM_CCSM,gg$CRCM_CGCM3,gg$GFDL_TS) 

data_norm_west<-normalize.vector(data_raw_west) 

 

data_raw_east<-c(ii$MM5I_CCSM,ii$RCM3_GFDL,ii$ECP2_GFDL,ii$WRFG_CCSM, 

ii$WRFG_CGCM3,ii$RCM3_CGCM3,ii$CRCM_CCSM,ii$CRCM_CGCM3,ii$GFDL_TS) 

data_norm_east<-normalize.vector(data_raw_east) 

 

cor1<-cor(data_raw_west,data_norm_west) 

cor2<-cor(data_raw_east,data_norm_east) 

 

 

windows() 

 

png(filename = 

"H://Dissertation//tasmax_west_east_rmse_vs_norm_rmse.png", width = 

1000, height = 800,units = "px", pointsize = 13.5, bg = "white",  

res = 130,restoreConsole = TRUE) 

 

par(mfrow=c(1,2)) 

plot(data_raw_west,data_norm_west,xlab="RMSE",ylab="Normalized 

RMSE",xlim=c(min(data_raw_west,data_raw_east),max(data_raw_west, 

data_raw_east)),ylim=c(min(data_norm_west,data_norm_east), 

max(data_norm_west,data_norm_east))) 

text(1,0.22,"R=") 

text(1.5,0.22,cor1) 

 

 

plot(data_raw_east,data_norm_east,xlab="RMSE",ylab="Normalized 

RMSE",xlim=c(min(data_raw_west,data_raw_east),max(data_raw_west, 

data_raw_east)),ylim=c(min(data_norm_west,data_norm_east), 

max(data_norm_west,data_norm_east))) 

text(1,0.22,"R=") 

text(1.5,0.22,cor1) 

 

dev.off() 
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APPENDIX F – GCM PERCENTILE PLOTS 

 
 Presented in Appendix F are the percentile plots created for the three global 

climate models used as boundary conditions for the NARCCAP RCM’s. These percentile 

plots provide an insight into the bias each GCM has in comparison to observations. 

Additionally, these plots can aid in explaining the biases found in each of the NARCCAP 

ensemble members. 
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Figure F.1. Percentile plots of minimum temperature bias for the east sub-region from the 

GCMs used as boundary conditions in NARCCAP for December (a) through November 

(l). Labels for the GCMs are as follows: “1”=CCSM, “2”=GFDL, and “3”=CGCM3. 
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Figure F.2. Percentile plots of minimum temperature bias for the west sub-region from 

the GCMs used as boundary conditions in NARCCAP for December (a) through 

November (l). Labels for the GCMs are as follows: “1”=CCSM, “2”=GFDL, and 

“3”=CGCM3. 
 

 



 

258 

 

T
e
m

p
e

ra
tu

re
 B

ia
s
 (

°C
) 

 
      Percentiles 

 

Figure F.3. Percentile plots of maximum temperature bias for the east sub-region from 

the GCMs used as boundary conditions in NARCCAP for December (a) through 

November (l). Labels for the GCMs are as follows: “1”=CCSM, “2”=GFDL, and 

“3”=CGCM3. 
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Figure F.4. Percentile plots of maximum temperature bias for the west sub-region from 

the GCMs used as boundary conditions in NARCCAP for December (a) through 

November (l). Labels for the GCMs are as follows: “1”=CCSM, “2”=GFDL, and 

“3”=CGCM3. 
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Figure F.5. Percentile plots of precipitation bias for the east sub-region from the GCMs 

used as boundary conditions in NARCCAP for December (a) through November (l). 

Labels for the GCMs are as follows: “1”=CCSM, “2”=GFDL, and “3”=CGCM3. 
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Figure F.6. Percentile plots of precipitation bias for the west sub-region from the GCMs 

used as boundary conditions in NARCCAP for December (a) through November (l). 

Labels for the GCMs are as follows: “1”=CCSM, “2”=GFDL, and “3”=CGCM3. 
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APPENDIX G – NARCCAP INDIVIDUAL ENSEMBLE MEMBER PROJECTIONS 

 
 Presented in Appendix G are the percentile plots created for the three global 

climate models used as boundary conditions for the NARCCAP RCM’s. These percentile 

plots provide an insight into the bias each GCM has in comparison to observations. 

Additionally, these plots can aid in explaining the biases found in each of the NARCCAP 

ensemble members. 
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G.1 MINIMUM TEMPERATURE 

 
 

Figure G.1. Individual January minimum temperature change for the WRFG-CGCM3 (a), 

RCM3-CGCM3 (b), CRCM-CGCM3 (c), WRFG-CCSM (d), MM5I-CCSM (e), CRCM-

CCSM (f), ECP2-GFDL (g), RCM3-GFDL (h), and GFDL-timeslice (i) NARCCAP 

models. 
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Figure G.2. Individual February minimum temperature change for the WRFG-CGCM3 

(a), RCM3-CGCM3 (b), CRCM-CGCM3 (c), WRFG-CCSM (d), MM5I-CCSM (e), 

CRCM-CCSM (f), ECP2-GFDL (g), RCM3-GFDL (h), and GFDL-timeslice (i) 

NARCCAP models. 
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Figure G.3. Individual March minimum temperature change for the WRFG-CGCM3 (a), 

RCM3-CGCM3 (b), CRCM-CGCM3 (c), WRFG-CCSM (d), MM5I-CCSM (e), CRCM-

CCSM (f), ECP2-GFDL (g), RCM3-GFDL (h), and GFDL-timeslice (i) NARCCAP 

models. 
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Figure G.4. Individual April minimum temperature change for the WRFG-CGCM3 (a), 

RCM3-CGCM3 (b), CRCM-CGCM3 (c), WRFG-CCSM (d), MM5I-CCSM (e), CRCM-

CCSM (f), ECP2-GFDL (g), RCM3-GFDL (h), and GFDL-timeslice (i) NARCCAP 

models. 
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Figure G.5. Individual May minimum temperature change for the WRFG-CGCM3 (a), 

RCM3-CGCM3 (b), CRCM-CGCM3 (c), WRFG-CCSM (d), MM5I-CCSM (e), CRCM-

CCSM (f), ECP2-GFDL (g), RCM3-GFDL (h), and GFDL-timeslice (i) NARCCAP 

models. 
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Figure G.6. Individual June minimum temperature change for the WRFG-CGCM3 (a), 

RCM3-CGCM3 (b), CRCM-CGCM3 (c), WRFG-CCSM (d), MM5I-CCSM (e), CRCM-

CCSM (f), ECP2-GFDL (g), RCM3-GFDL (h), and GFDL-timeslice (i) NARCCAP 

models. 
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Figure G.7. Individual July minimum temperature change for the WRFG-CGCM3 (a), 

RCM3-CGCM3 (b), CRCM-CGCM3 (c), WRFG-CCSM (d), MM5I-CCSM (e), CRCM-

CCSM (f), ECP2-GFDL (g), RCM3-GFDL (h), and GFDL-timeslice (i) NARCCAP 

models. 
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Figure G.8. Individual August minimum temperature change for the WRFG-CGCM3 (a), 

RCM3-CGCM3 (b), CRCM-CGCM3 (c), WRFG-CCSM (d), MM5I-CCSM (e), CRCM-

CCSM (f), ECP2-GFDL (g), RCM3-GFDL (h), and GFDL-timeslice (i) NARCCAP 

models. 
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Figure G.9. Individual September minimum temperature change for the WRFG-CGCM3 

(a), RCM3-CGCM3 (b), CRCM-CGCM3 (c), WRFG-CCSM (d), MM5I-CCSM (e), 

CRCM-CCSM (f), ECP2-GFDL (g), RCM3-GFDL (h), and GFDL-timeslice (i) 

NARCCAP models. 
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Figure G.10. Individual October minimum temperature change for the WRFG-CGCM3 

(a), RCM3-CGCM3 (b), CRCM-CGCM3 (c), WRFG-CCSM (d), MM5I-CCSM (e), 

CRCM-CCSM (f), ECP2-GFDL (g), RCM3-GFDL (h), and GFDL-timeslice (i) 

NARCCAP models. 
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Figure G.11. Individual November minimum temperature change for the WRFG-CGCM3 

(a), RCM3-CGCM3 (b), CRCM-CGCM3 (c), WRFG-CCSM (d), MM5I-CCSM (e), 

CRCM-CCSM (f), ECP2-GFDL (g), RCM3-GFDL (h), and GFDL-timeslice (i) 

NARCCAP models. 
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Figure G.12. Individual December minimum temperature change for the WRFG-CGCM3 

(a), RCM3-CGCM3 (b), CRCM-CGCM3 (c), WRFG-CCSM (d), MM5I-CCSM (e), 

CRCM-CCSM (f), ECP2-GFDL (g), RCM3-GFDL (h), and GFDL-timeslice (i) 

NARCCAP models. 
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G.2 MAXIMUM TEMPERATURE 

 
 

Figure G.13. Individual January maximum temperature change for the WRFG-CGCM3 

(a), RCM3-CGCM3 (b), CRCM-CGCM3 (c), WRFG-CCSM (d), MM5I-CCSM (e), 

CRCM-CCSM (f), ECP2-GFDL (g), RCM3-GFDL (h), and GFDL-timeslice (i) 

NARCCAP models. 
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Figure G.14. Individual February maximum temperature change for the WRFG-CGCM3 

(a), RCM3-CGCM3 (b), CRCM-CGCM3 (c), WRFG-CCSM (d), MM5I-CCSM (e), 

CRCM-CCSM (f), ECP2-GFDL (g), RCM3-GFDL (h), and GFDL-timeslice (i) 

NARCCAP models. 
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Figure G.15. Individual March maximum temperature change for the WRFG-CGCM3 

(a), RCM3-CGCM3 (b), CRCM-CGCM3 (c), WRFG-CCSM (d), MM5I-CCSM (e), 

CRCM-CCSM (f), ECP2-GFDL (g), RCM3-GFDL (h), and GFDL-timeslice (i) 

NARCCAP models. 

 



 

278 

 

 
 

Figure G.16. Individual April maximum temperature change for the WRFG-CGCM3 (a), 

RCM3-CGCM3 (b), CRCM-CGCM3 (c), WRFG-CCSM (d), MM5I-CCSM (e), CRCM-

CCSM (f), ECP2-GFDL (g), RCM3-GFDL (h), and GFDL-timeslice (i) NARCCAP 

models. 
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Figure G.17. Individual May maximum temperature change for the WRFG-CGCM3 (a), 

RCM3-CGCM3 (b), CRCM-CGCM3 (c), WRFG-CCSM (d), MM5I-CCSM (e), CRCM-

CCSM (f), ECP2-GFDL (g), RCM3-GFDL (h), and GFDL-timeslice (i) NARCCAP 

models. 
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Figure G.18. Individual June maximum temperature change for the WRFG-CGCM3 (a), 

RCM3-CGCM3 (b), CRCM-CGCM3 (c), WRFG-CCSM (d), MM5I-CCSM (e), CRCM-

CCSM (f), ECP2-GFDL (g), RCM3-GFDL (h), and GFDL-timeslice (i) NARCCAP 

models. 
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Figure G.19. Individual July maximum temperature change for the WRFG-CGCM3 (a), 

RCM3-CGCM3 (b), CRCM-CGCM3 (c), WRFG-CCSM (d), MM5I-CCSM (e), CRCM-

CCSM (f), ECP2-GFDL (g), RCM3-GFDL (h), and GFDL-timeslice (i) NARCCAP 

models. 
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Figure G.20. Individual August maximum temperature change for the WRFG-CGCM3 

(a), RCM3-CGCM3 (b), CRCM-CGCM3 (c), WRFG-CCSM (d), MM5I-CCSM (e), 

CRCM-CCSM (f), ECP2-GFDL (g), RCM3-GFDL (h), and GFDL-timeslice (i) 

NARCCAP models. 
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Figure G.21. Individual September maximum temperature change for the WRFG-

CGCM3 (a), RCM3-CGCM3 (b), CRCM-CGCM3 (c), WRFG-CCSM (d), MM5I-CCSM 

(e), CRCM-CCSM (f), ECP2-GFDL (g), RCM3-GFDL (h), and GFDL-timeslice (i) 

NARCCAP models. 
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Figure G.22. Individual October maximum temperature change for the WRFG-CGCM3 

(a), RCM3-CGCM3 (b), CRCM-CGCM3 (c), WRFG-CCSM (d), MM5I-CCSM (e), 

CRCM-CCSM (f), ECP2-GFDL (g), RCM3-GFDL (h), and GFDL-timeslice (i) 

NARCCAP models. 
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Figure G.23. Individual November maximum temperature change for the WRFG-

CGCM3 (a), RCM3-CGCM3 (b), CRCM-CGCM3 (c), WRFG-CCSM (d), MM5I-CCSM 

(e), CRCM-CCSM (f), ECP2-GFDL (g), RCM3-GFDL (h), and GFDL-timeslice (i) 

NARCCAP models. 
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Figure G.24. Individual December maximum temperature change for the WRFG-

CGCM3 (a), RCM3-CGCM3 (b), CRCM-CGCM3 (c), WRFG-CCSM (d), MM5I-CCSM 

(e), CRCM-CCSM (f), ECP2-GFDL (g), RCM3-GFDL (h), and GFDL-timeslice (i) 

NARCCAP models. 
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G.3 MEAN PRECIPITATION 

 
 

Figure G.25. Individual January mean precipitation change for the WRFG-CGCM3 (a), 

RCM3-CGCM3 (b), CRCM-CGCM3 (c), WRFG-CCSM (d), MM5I-CCSM (e), CRCM-

CCSM (f), ECP2-GFDL (g), RCM3-GFDL (h), and GFDL-timeslice (i) NARCCAP 

models. 
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Figure G.26. Individual February mean precipitation change for the WRFG-CGCM3 (a), 

RCM3-CGCM3 (b), CRCM-CGCM3 (c), WRFG-CCSM (d), MM5I-CCSM (e), CRCM-

CCSM (f), ECP2-GFDL (g), RCM3-GFDL (h), and GFDL-timeslice (i) NARCCAP 

models. 
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Figure G.27. Individual March mean precipitation change for the WRFG-CGCM3 (a), 

RCM3-CGCM3 (b), CRCM-CGCM3 (c), WRFG-CCSM (d), MM5I-CCSM (e), CRCM-

CCSM (f), ECP2-GFDL (g), RCM3-GFDL (h), and GFDL-timeslice (i) NARCCAP 

models. 
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Figure G.28. Individual April mean precipitation change for the WRFG-CGCM3 (a), 

RCM3-CGCM3 (b), CRCM-CGCM3 (c), WRFG-CCSM (d), MM5I-CCSM (e), CRCM-

CCSM (f), ECP2-GFDL (g), RCM3-GFDL (h), and GFDL-timeslice (i) NARCCAP 

models. 
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Figure G.29. Individual May mean precipitation change for the WRFG-CGCM3 (a), 

RCM3-CGCM3 (b), CRCM-CGCM3 (c), WRFG-CCSM (d), MM5I-CCSM (e), CRCM-

CCSM (f), ECP2-GFDL (g), RCM3-GFDL (h), and GFDL-timeslice (i) NARCCAP 

models. 
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Figure G.30. Individual June mean precipitation change for the WRFG-CGCM3 (a), 

RCM3-CGCM3 (b), CRCM-CGCM3 (c), WRFG-CCSM (d), MM5I-CCSM (e), CRCM-

CCSM (f), ECP2-GFDL (g), RCM3-GFDL (h), and GFDL-timeslice (i) NARCCAP 

models. 
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Figure G.31. Individual July mean precipitation change for the WRFG-CGCM3 (a), 

RCM3-CGCM3 (b), CRCM-CGCM3 (c), WRFG-CCSM (d), MM5I-CCSM (e), CRCM-

CCSM (f), ECP2-GFDL (g), RCM3-GFDL (h), and GFDL-timeslice (i) NARCCAP 

models. 
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Figure G.32. Individual August mean precipitation change for the WRFG-CGCM3 (a), 

RCM3-CGCM3 (b), CRCM-CGCM3 (c), WRFG-CCSM (d), MM5I-CCSM (e), CRCM-

CCSM (f), ECP2-GFDL (g), RCM3-GFDL (h), and GFDL-timeslice (i) NARCCAP 

models. 
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Figure G.33. Individual September mean precipitation change for the WRFG-CGCM3 

(a), RCM3-CGCM3 (b), CRCM-CGCM3 (c), WRFG-CCSM (d), MM5I-CCSM (e), 

CRCM-CCSM (f), ECP2-GFDL (g), RCM3-GFDL (h), and GFDL-timeslice (i) 

NARCCAP models. 
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Figure G.34. Individual October mean precipitation change for the WRFG-CGCM3 (a), 

RCM3-CGCM3 (b), CRCM-CGCM3 (c), WRFG-CCSM (d), MM5I-CCSM (e), CRCM-

CCSM (f), ECP2-GFDL (g), RCM3-GFDL (h), and GFDL-timeslice (i) NARCCAP 

models. 
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Figure G.35. Individual November mean precipitation change for the WRFG-CGCM3 

(a), RCM3-CGCM3 (b), CRCM-CGCM3 (c), WRFG-CCSM (d), MM5I-CCSM (e), 

CRCM-CCSM (f), ECP2-GFDL (g), RCM3-GFDL (h), and GFDL-timeslice (i) 

NARCCAP models. 
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Figure G.36. Individual December mean precipitation change for the WRFG-CGCM3 

(a), RCM3-CGCM3 (b), CRCM-CGCM3 (c), WRFG-CCSM (d), MM5I-CCSM (e), 

CRCM-CCSM (f), ECP2-GFDL (g), RCM3-GFDL (h), and GFDL-timeslice (i) 

NARCCAP models. 
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APPENDIX H – RCM-NCEP REANALYSIS 

 
 Presented in Appendix H are percentile plots of minimum temperature, maximum 

temperature, and mean precipitation for RCMs from NARCCAP run with NCEP 

Reanalysis boundary conditions. Additionally, monthly time series soil moisture, latent 

and sensible heat flux, 500mb height, and cloud cover are presented.
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Figure H.1. Percentile plots of minimum temperature bias for the east sub-region from 

each NARCCAP RCMs run with NCEP reanalysis LBCs for December (a) through 

November (l). Labels for the RCMs are as follows: “1”=CRCM, “2”=ECP2, “3”=MM5I, 

“4”=RCM3, and “5”=WRFG. 
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Figure H.2. Percentile plots of minimum temperature bias for the west sub-region from 

each NARCCAP RCMs run with NCEP reanalysis LBCs for December (a) through 

November (l). Labels for the RCMs are as follows: “1”=CRCM, “2”=ECP2, “3”=MM5I, 

“4”=RCM3, and “5”=WRFG. 
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Figure H.3. Percentile plots of maximum temperature bias for the east sub-region from 

each NARCCAP RCMs run with NCEP reanalysis LBCs for December (a) through 

November (l). Labels for the RCMs are as follows: “1”=CRCM, “2”=ECP2, “3”=MM5I, 

“4”=RCM3, and “5”=WRFG. 
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Figure H.4. Percentile plots of maximum temperature bias for the west sub-region from 

each NARCCAP RCMs run with NCEP reanalysis LBCs for December (a) through 

November (l). Labels for the RCMs are as follows: “1”=CRCM, “2”=ECP2, “3”=MM5I, 

“4”=RCM3, and “5”=WRFG. 
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Figure H.5. Percentile plots of mean precipitation bias for the east sub-region from each 

NARCCAP RCMs run with NCEP reanalysis LBCs for December (a) through November 

(l). Labels for the RCMs are as follows: “1”=CRCM, “2”=ECP2, “3”=MM5I, 

“4”=RCM3, and “5”=WRFG. 
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Figure H.6. Percentile plots of mean precipitation bias for the west sub-region from each 

NARCCAP RCMs run with NCEP reanalysis LBCs for December (a) through November 

(l). Labels for the RCMs are as follows: “1”=CRCM, “2”=ECP2, “3”=MM5I, 

“4”=RCM3, and “5”=WRFG. 
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Figure H.7. Box and whisker plots of monthly soil moisture for RCMs run with NCEP 

reanalysis as boundary conditions for the east sub-regions for December (a) through 

November (l). 

 

a) b) c) 

d) e) f) 

g) h) i) 

j) k) l) 
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Figure H.8. Box and whisker plots of monthly soil moisture for RCMs run with NCEP 

reanalysis as boundary conditions for the west sub-regions for December (a) through 

November (l). 

 

 

 

 

 

 

a) b) c) 

d) e) f) 

g) h) i) 

j) k) l) 
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Figure H.9. Box and whisker plots of monthly latent heat flux for RCMs run with NCEP 

reanalysis as boundary conditions for the east sub-regions for December (a) through 

November (l). 

 

a) b) c) 

d) e) f) 

g) h) i) 

j) k) l) 
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Figure H.10. Box and whisker plots of monthly latent heat flux for RCMs run with NCEP 

reanalysis as boundary conditions for the west sub-regions for December (a) through 

November (l). 

 

 

 

 

 

a) b) c) 

d) e) f) 

g) h) i) 

j) k) l) 
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Figure H.11. Box and whisker plots of monthly sensible heat flux for RCMs run with 

NCEP reanalysis as boundary conditions for the east sub-regions for December (a) 

through November (l). 

 

a) b) c) 

d) e) f) 

g) h) i) 

j) k) l) 
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Figure H.12. Box and whisker plots of monthly sensible heat flux for RCMs run with 

NCEP reanalysis as boundary conditions for the west sub-regions for December (a) 

through November (l). 

 

 

 

 

 

 

a) b) c) 

d) e) f) 

g) h) i) 

j) k) l) 
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Figure H.13. Box and whisker plots of monthly 500-mb heights for RCMs run with 

NCEP reanalysis as boundary conditions for the east sub-regions for December (a) 

through November (l). 

 

 

a) b) c) 

d) e) f) 

g) h) i) 

j) k) l) 
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Figure H.14. Box and whisker plots of monthly 500-mb heights for RCMs run with 

NCEP reanalysis as boundary conditions for the west sub-regions for December (a) 

through November (l). 

 

 

 

 

 

a) b) c) 

d) e) f) 

g) h) i) 

j) k) l) 
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Figure H.15. Box and whisker plots of monthly total cloud cover for RCMs run with 

NCEP reanalysis as boundary conditions for the east sub-regions for December (a) 

through November (l). 
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Figure H.16. Box and whisker plots of monthly total cloud cover for RCMs run with 

NCEP reanalysis as boundary conditions for the west sub-regions for December (a) 

through November (l). 
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APPENDIX I – MICRO-, MESO-, AND SYNOPTIC-SCALE SUPPLEMENTAL 

GRAPHICS 
 

 Presented in Appendix I are graphics providing enhanced insight into the the 

micro-, meso-, and synoptic-scale variables used to assess model deficiencies related to 

the energy- and moisture-budgets as well as surface and upper-level flow patterns. 
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Figure I.1. Montly anomolies (RCM values minus observations) of micro-, meso-, and synoptic-scale components for grid points from 

the east sub-region. Black boxes on the precipitation minus potential evapotranspirtation (P-PE) histograms represent a model-

predicted surplus of moisture for the respective month (P-PE before subtracting from observations). Each histogram begins with the 

month of January and ends with the month of December.
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Figure I.2. Montly anomolies (RCM values minus observations) of micro-, meso-, and synoptic-scale components for grid points from 

the west sub-region. Black boxes on the precipitation minus potential evapotranspirtation (P-PE) histograms represent a model-

predicted surplus of moisture for the respective month (P-PE before subtracting from observations). Each histogram begins with the 

month of January and ends with the month of December.
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Figure I.3. Individual January 500-mb height anomolies for the WRFG-CGCM3 (a), 

RCM3-CGCM3 (b), CRCM-CGCM3 (c), MM5I-CCSM (d), CRCM-CCSM (e), 

ECP2-GFDL (f), RCM3-GFDL (g), and GFDL-timeslice (h) NARCCAP models. 
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Figure I.4. Individual February 500-mb height anomolies for the WRFG-CGCM3 (a), 

RCM3-CGCM3 (b), CRCM-CGCM3 (c), MM5I-CCSM (d), CRCM-CCSM (e), 

ECP2-GFDL (f), RCM3-GFDL (g), and GFDL-timeslice (h) NARCCAP models. 
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Figure I.5. Individual March 500-mb height anomolies for the WRFG-CGCM3 (a), 

RCM3-CGCM3 (b), CRCM-CGCM3 (c), MM5I-CCSM (d), CRCM-CCSM (e), 

ECP2-GFDL (f), RCM3-GFDL (g), and GFDL-timeslice (h) NARCCAP models. 
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Figure I.6. Individual April 500-mb height anomolies for the WRFG-CGCM3 (a), 

RCM3-CGCM3 (b), CRCM-CGCM3 (c), MM5I-CCSM (d), CRCM-CCSM (e), 

ECP2-GFDL (f), RCM3-GFDL (g), and GFDL-timeslice (h) NARCCAP models. 
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Figure I.7. Individual May 500-mb height anomolies for the WRFG-CGCM3 (a), 

RCM3-CGCM3 (b), CRCM-CGCM3 (c), MM5I-CCSM (d), CRCM-CCSM (e), 

ECP2-GFDL (f), RCM3-GFDL (g), and GFDL-timeslice (h) NARCCAP models. 
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Figure I.8. Individual June 500-mb height anomolies for the WRFG-CGCM3 (a), 

RCM3-CGCM3 (b), CRCM-CGCM3 (c), MM5I-CCSM (d), CRCM-CCSM (e), 

ECP2-GFDL (f), RCM3-GFDL (g), and GFDL-timeslice (h) NARCCAP models. 
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Figure I.9. Individual July 500-mb height anomolies for the WRFG-CGCM3 (a), 

RCM3-CGCM3 (b), CRCM-CGCM3 (c), MM5I-CCSM (d), CRCM-CCSM (e), 

ECP2-GFDL (f), RCM3-GFDL (g), and GFDL-timeslice (h) NARCCAP models. 
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Figure I.10. Individual August 500-mb height anomolies for the WRFG-CGCM3 (a), 

RCM3-CGCM3 (b), CRCM-CGCM3 (c), MM5I-CCSM (d), CRCM-CCSM (e), 

ECP2-GFDL (f), RCM3-GFDL (g), and GFDL-timeslice (h) NARCCAP models. 
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Figure I.11. Individual September 500-mb height anomolies for the WRFG-CGCM3 

(a), RCM3-CGCM3 (b), CRCM-CGCM3 (c), MM5I-CCSM (d), CRCM-CCSM (e), 

ECP2-GFDL (f), RCM3-GFDL (g), and GFDL-timeslice (h) NARCCAP models. 
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Figure I.12. Individual October 500-mb height anomolies for the WRFG-CGCM3 (a), 

RCM3-CGCM3 (b), CRCM-CGCM3 (c), MM5I-CCSM (d), CRCM-CCSM (e), 

ECP2-GFDL (f), RCM3-GFDL (g), and GFDL-timeslice (h) NARCCAP models. 
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Figure I.13. Individual November 500-mb height anomolies for the WRFG-CGCM3 

(a), RCM3-CGCM3 (b), CRCM-CGCM3 (c), MM5I-CCSM (d), CRCM-CCSM (e), 

ECP2-GFDL (f), RCM3-GFDL (g), and GFDL-timeslice (h) NARCCAP models. 
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Figure I.14. Individual December 500-mb height anomolies for the WRFG-CGCM3 

(a), RCM3-CGCM3 (b), CRCM-CGCM3 (c), MM5I-CCSM (d), CRCM-CCSM (e), 

ECP2-GFDL (f), RCM3-GFDL (g), and GFDL-timeslice (h) NARCCAP models. 
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Figure I.15. Individual January sea-level pressure anomolies for the WRFG-CGCM3 

(a), RCM3-CGCM3 (b), CRCM-CGCM3 (c), WRFG-CCSM (d), MM5I-CCSM (e), 

CRCM-CCSM (f), ECP2-GFDL (g), RCM3-GFDL (h), and GFDL-timeslice (i) 

NARCCAP models. 
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Figure I.16. Individual February sea-level pressure anomolies for the WRFG-CGCM3 

(a), RCM3-CGCM3 (b), CRCM-CGCM3 (c), WRFG-CCSM (d), MM5I-CCSM (e), 

CRCM-CCSM (f), ECP2-GFDL (g), RCM3-GFDL (h), and GFDL-timeslice (i) 

NARCCAP models. 
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Figure I.17. Individual March sea-level pressure anomolies for the WRFG-CGCM3 

(a), RCM3-CGCM3 (b), CRCM-CGCM3 (c), WRFG-CCSM (d), MM5I-CCSM (e), 

CRCM-CCSM (f), ECP2-GFDL (g), RCM3-GFDL (h), and GFDL-timeslice (i) 

NARCCAP models. 
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Figure I.18. Individual April sea-level pressure anomolies for the WRFG-CGCM3 

(a), RCM3-CGCM3 (b), CRCM-CGCM3 (c), WRFG-CCSM (d), MM5I-CCSM (e), 

CRCM-CCSM (f), ECP2-GFDL (g), RCM3-GFDL (h), and GFDL-timeslice (i) 

NARCCAP models. 
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Figure I.19. Individual May sea-level pressure anomolies for the WRFG-CGCM3 (a), 

RCM3-CGCM3 (b), CRCM-CGCM3 (c), WRFG-CCSM (d), MM5I-CCSM (e), 

CRCM-CCSM (f), ECP2-GFDL (g), RCM3-GFDL (h), and GFDL-timeslice (i) 

NARCCAP models. 
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Figure I.20. Individual June sea-level pressure anomolies for the WRFG-CGCM3 (a), 

RCM3-CGCM3 (b), CRCM-CGCM3 (c), WRFG-CCSM (d), MM5I-CCSM (e), 

CRCM-CCSM (f), ECP2-GFDL (g), RCM3-GFDL (h), and GFDL-timeslice (i) 

NARCCAP models. 
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Figure I.21. Individual July sea-level pressure anomolies for the WRFG-CGCM3 (a), 

RCM3-CGCM3 (b), CRCM-CGCM3 (c), WRFG-CCSM (d), MM5I-CCSM (e), 

CRCM-CCSM (f), ECP2-GFDL (g), RCM3-GFDL (h), and GFDL-timeslice (i) 

NARCCAP models. 
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Figure I.22. Individual August sea-level pressure anomolies for the WRFG-CGCM3 

(a), RCM3-CGCM3 (b), CRCM-CGCM3 (c), WRFG-CCSM (d), MM5I-CCSM (e), 

CRCM-CCSM (f), ECP2-GFDL (g), RCM3-GFDL (h), and GFDL-timeslice (i) 

NARCCAP models. 
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Figure I.23. Individual September sea-level pressure anomolies for the WRFG-

CGCM3 (a), RCM3-CGCM3 (b), CRCM-CGCM3 (c), WRFG-CCSM (d), MM5I-

CCSM (e), CRCM-CCSM (f), ECP2-GFDL (g), RCM3-GFDL (h), and GFDL-

timeslice (i) NARCCAP models. 
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Figure I.24. Individual October sea-level pressure anomolies for the WRFG-CGCM3 

(a), RCM3-CGCM3 (b), CRCM-CGCM3 (c), WRFG-CCSM (d), MM5I-CCSM (e), 

CRCM-CCSM (f), ECP2-GFDL (g), RCM3-GFDL (h), and GFDL-timeslice (i) 

NARCCAP models. 
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Figure I.25. Individual November sea-level pressure anomolies for the WRFG-

CGCM3 (a), RCM3-CGCM3 (b), CRCM-CGCM3 (c), WRFG-CCSM (d), MM5I-

CCSM (e), CRCM-CCSM (f), ECP2-GFDL (g), RCM3-GFDL (h), and GFDL-

timeslice (i) NARCCAP models. 
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Figure I.26. Individual December sea-level pressure anomolies for the WRFG-

CGCM3 (a), RCM3-CGCM3 (b), CRCM-CGCM3 (c), WRFG-CCSM (d), MM5I-

CCSM (e), CRCM-CCSM (f), ECP2-GFDL (g), RCM3-GFDL (h), and GFDL-

timeslice (i) NARCCAP models. 

 

 

 

 


